
Colenda @ the University of Pennsylvania
Make “bad” decisions with confidence!: Using a decoupled, pluggable architecture for object processing

Penn Libraries are creating a long-term preservation ecosystem including Hydra at its core. Colenda is a Hydra head that provides
materials-agnostic functionality for distributed workflows around administration of digital assets and metadata through a pluggable
architecture for metadata schemata and entry. Objects consist of two types of things: assets and metadata. Assets consist of all files
associated with an object’s representation. Metadata consists of information describing the object or its structure. In Colenda, metadata
sources come in the form of spreadsheets that directly contain metadata and/or information that allows metadata lookup services to
extract bibliographic information for descriptive metadata from external sources such as the library catalog. Because the application
accepts files as metadata sources, this allows the metadata entry interface to be versioned alongside the metadata it is creating, which
allows an ongoing thorough understanding of the metadata based on the context in which it was entered.

The beginning scope of the project addresses page-turning objects, specifically manuscripts from Penn’s collections, and represents
significant development of a completely generalized approach to object creation and ongoing management. Its first phase of software
development has just been completed and the team is currently working on crafting a robust stack of software and hardware fitting
together with this application.

• Colenda (Hydra & Rails)
Colenda uses Hydra for metadata aggregation in Fedora, as well as
search and discovery in Solr/Blacklight. Additional functionality to
curate and manage assets and metadata is provided in the
application through Rails. Versioned assets stored on the remote
filesystem are referenced through Fedora at specified paths using
the “access-type=URL” directive in the RESTful HTTP API.

• Git & git-annex
Git repositories created through Colenda’s workflows use git-annex,
a tool that extends Git to version files for long-term preservation
without checking the binaries into Git; rather, git-annex versions
references to file content and location. Binaries are stored in a
key/value store where the key is derived from a SHA-256 checksum
of file content. This provides a layer of abstraction that allows
users to flexibly rearrange items on the file system without
breaking ingestion workflows. Files are stored on separate storage
identified as a git-annex special remote. A special remote is an
abstraction that handles storage of binary content but not
versioning metadata, and integrates with the Git ecosystem.

• Ceph Storage Cluster (S3)
The binaries referenced in Colenda’s Git repositories live on remote
storage that runs as a Ceph storage cluster. Ceph is a hardware-
agnostic software storage platform that prioritizes data replication
across multiple nodes for high availability, high replication for fault-
tolerance, and scalability. The versions of the files targeted for
long-term preservation are stored in one place and referenced
using git-annex and Fedora plugins on the remote, using an S3-
compatible gateway API.

Development &
Deployment Team

• Katherine Lynch (Hydra)
Senior Application Developer

• Michael Gibney (Git & git-annex)
Senior Application Developer

• Martin Oestergaard (Ceph)
Unix Systems Administrator

Colenda is intended for use as part of a
larger repository ecosystem. The team at
Penn Libraries is currently in the process of
creating and test-deploying an architecture
using a Ceph storage cluster, git-annex for
versioning of large files, and Hydra/Rails for
management of object files and metadata
representation.

Repository Ecosystem

gi
tp

us
h

.git

Metadata source files
are uploaded to the
remote. The user can
then identify and
describe them so the
application knows how
to handle them for
metadata extraction.

4

2
3

1

5

Asset and metadata files are packaged in Git
repositories. This allows users to upload securely
using Git commands and supports long-term
preservation as files are versioned, thereby
allowing the system to keep track of all changes to
files and metadata over the course of an object’s
lifetime. Users create the Git remotes they will
interact with for each object and perform
administrative tasks to get the objects ready for
ingest.

The application extracts and maps metadata for the object based
on the contents and description of its metadata sources. At this
stage, users can review the extracted metadata for verification,
specify different field mappings if those used in the metadata
source do not match up with the approved metadata schema for
preservation, and define relationships between sources.

The application generates an XML document that represents the data
and field mappings in their purest abstract form, which the user can
then spot-check in the interface. This document is added to the object’s
Git repository and is updated as metadata and field mappings change.

Using the generated XML file as a layer of data abstraction, the
application ingests a representation of the object into Fedora and indexes
it to Solr/Blacklight. Assets in the Git repository that are referenced in the
structural metadata are picked up for verification, derivative creation, and
ingestion. The object is now ready for review.

The application provides two review interfaces:
Blacklight, which represents the data as it will
be seen in production, and a stripped-down
admin interface where all metadata associated
with an object is displayed alongside relevant
assets for targeted review. This interface also
features a persistent log of any asset-related
problems detected during ingest, such as
missing or corrupt files, and functionality to add
working notes to the object if desired.

