PROFILING
YOUR STACK

EVERYTHING’S SLOW, WHAT NOW?

Trey Pendragon
Princeton University Library

STEP 1: INITIAL TEST

Profiling and fixing performance bugs is time-intensive — a quick test in
Chrome should tell you if it’s worth exploring.

Open the network tab of the developer tools, scroll to the top, and do
your action.

[w i] Elements Console Sources Network Timeline Profiles Application Security » : x
® o . Y View: a= = Preserve log # Disable cache Offline No throttling v
Regex Hide data URLs

All XHR JS CSS Img Media Font Doc WS Manifest Other

Name Status T Initiat Size Time Ti
Path Text ype FINIAsOr Conter Lateffc '
xs55mc23d 200 10.4... 397ms

cdoc:-- Oth
== /concerm/scanned_resources OK . 27.4... 393ms

JUNE 21 - UGH

£

\

ar

€
€

\

tpendragon M
File manager takes a long time to load..

Trying to persist a reorder.
It’s uh

Taking a while
tpendragon o =©

Oh it finished

8.3 minutes

escowles 0
so that's less than ideal...

tpendragon
Yeah..

STEP 2: FIND WHERE TO
FOCUS

A request is slow, but what part of the interaction is the slow
part?

* Disk 1/0?

- Database writes?
* Queries?
 Ruby code?

* Network?

STEP 2: FIND WHERE TO FOCUS

Have response monitoring infrastructure up EARLY. Any tool
which tracks the request/response cycle saves a mountain of
time.

We use New Relic

NEW RELIC

* View transactions by most time consuming or slowest
average response tlme

Pur“ (Staging)

MONITORID NG

m

Overview
Service maps
Transactions
Databases
External services

Ruby VMs

M

-
)

Last 7 ca\ 's endi ng Nnow

Type Web

Most time consuming

CatalogController#index
CurationConcerns::ScannedResourcesController#edit
CurationConcerns::ScannedResourcesController#manifest
WelcomeController#findex

CurationConcerns::ScannedResourcesController#update

CuratinnC Aancarnc CrannandDacriiveracl antrallardchmag

29.1%

15%

14.1%

13.3%

9.57%

T QR

NEW RELIC

 Click the relevant transaction

 Look at a trace

Transaction traces
Sample performance details
Date Transaction / Details App server

CurationConcerns::ScannedResourcesController#edit

/concern/scanned_resources/zs25x8738/edit 2063:ms

NEW RELIC

 View trace details

Summary Trace detalls Map Beta Database queries
Expand performance problems Collapse all
Duration (ms) Duration (%) Segment Drilldown Timestamp
2,060 100.00% CurationConcerns::ScannedResourcesController#edit 0.000 s
2,060 99.85% 25 fast method calls 0.000 s
2,060 99.71% ActionDispatch::Routing::RouteSet#call 0.003 s
2,060 I 99.61% #(é:;:;ationConcerns::ScannedResourcesController 0.005 s

Net::HTTP[http://localhost:8080/fedora/rest/stagin

— 1.02% ag/zs/25/x8/73/2s25x8738]: HEAD > R
Net::HTTP[http://localhost:8080/fedora/rest/stagin

480 e 9/25/25/x8/73/2525x8738]: GET > 0057 s

Application code (in CurationConcerns::ScannedRes

1250 - 60.35% ourcesController#edit) @ 00055

1.0 0.05% Postgres User find 8 1.330 s

8.0 0.39% 6 calls to Postgres Role find 1.332 s

618 29.96% base/edit.ntml.erb Template 1.402 s

607 29.42% base/_form.html.erb Partial 1.413 s

32.0 1.55% base/_form_descriptive_fields.html. 1.425 s

erb Partial

STEP 3: PROFILING RUBY (IF
NECESSARY)

* You’re probably past the point of the Benchmark module
providing enough information now.

* Enter RubyProf ()

e.find("z603gz15t")
S. tltle — [Profile Testing"]
puts "Ru ing Proftile"™
result = 1byl .profile
s.save!

printer = Pr 22 : er.new(result)
printer. prlnt(.open{("tmp/test_dump.html" by ®)5

https://github.com/ruby-prof/ruby-prof

STEP 3: PROFILING RUBY

23,543 calls to RDFSource#get values was our culprit.

That many calls to ANY code is going to be slow.

STEP 4: CALL IN
REINFORCEMENTS

You have enough research now to get a lot of help if you
need it. Message the community — you’ll get a response.

There would be a picture of a bunch of collaboration on Slack
here if the logs went back that far.

STEP 5: FIX IT AND START
OVER

It turned out ActiveFedora was copying graph objects
statement-by-statement many times it didn’t need to. One PR
cut things down to around 60 seconds to persist.

=143 02% (100.00%) ActivePFedora::FedoraAttributes#resource {1 calls, 1792 wotal]
=143 01% (9999%) Ldp::Resvurce::RdfSourcederaph [2 calls, 12 total]
=142 93% (99 81%) Ldp::Resvurce::RdfSourcefresponse graph [1 calls, 7 total)
=12237% (52.11%) Ldp::Resource::RdfSourcefresponse as graph [1 calls, 7 total)
—12237% (9998%) Ldp::Responsefeach statement [1 calls, 7 total]
=122 37% (100.00%) Ldp::Response#reader [1 calls, 7 1otal]
=122 36% (9999%) <Class::RDF::Turtle::Reader=-#new [1 calls, 7 total]
(=12236% (100.00%) RDF:-Turtle::Readerfinitialize [1 calls, 7 total)
=12236% (100.00%) RDF::Reader#initialize [1 calls. 7 wotal]
—=12236% (100.00%) BasicObject#instance_eval [1 calls, 17 total]
=122 36% (99.99%) Proc#call [1 calls, 39077 total]
=12236% (100.00%) RDF:-Turtle::Readerfeach statement [1 calls, 7 total]
=122 03% (98 52%) RDF::Turtle::Reader#read statement [1407 calls, 1659 wotal]

WHAT IF IT’S FEDORA?

After we fixed the ruby problems, New Relic showed that

GETs of a single 1,000 page object were taking 40-60
seconds.

REPRODUCTION

Get the smallest set of test scripts you can to reproduce the
problem (thanks Esmé!) and either message the Fedora
community on IRC or make a ticket on their Jira.

» https://jira.duraspace.org/projects/[FCREPO/issues/

GET INVOLVED

Fedora’s always looking for community involvement. If you
feel like you can contribute towards your own performance
issues, please get involved!

MORAL OF THE
STORY

Profiling is often difficult and exhausting. It takes a lot of
time.

« Decide if it’s worth the investment.

* Focus your effort.

« Spend time on the slowest pieces first. Sometimes it’s
easy to work on micro-improvements — avoid the

temptation.

QUESTIONS?

Trey Pendragon
tpendragon@princeton.edu

@pendragon_dt

