
Accepting Application
Ownership

Introduction

Jeremy Friesen
Digital Library Frameworks Specialist

University of Notre Dame

jfriesen@nd.edu

@jeremyfriesen

github.com/jeremyf

ndlib.github.io

Presentation at goo.gl/G6oN89

mailto:jfriesen@nd.edu
https://twitter.com/jeremyfriesen
https://github.com/jeremyf
https://ndlib.github.io
http://goo.gl/G6oN89

From my 2013 Open Repositories
lightning talk.

Accepting Application Ownership

Bad Luck Brian meme, created @ quickmeme.com

Let’s write Acceptance Tests

“A Blank Page; A Fresh Start.” https://www.flickr.com/photos/rozabbotts

Let’s write some users
stories to figure this out

A Use Case

As a developer at Notre Dame
I want to enjoy working on applications

So that I have energy to keep working on
applications

A Use Case

Well…
As a strategist at Notre Dame
I want to grow our institutional academic
services

So that I can help meet the ever growing
demands of the academy

A Use Case

Fine…
As a developer at Notre Dame
I want more developers on staff

So that we can meet the ever growing
demands of the academy.

A Use Case

Actually…
As a strategist at Notre Dame
I want our existing institutional
applications to have a low cost of
ownership

So that I need not keep begging, pleading,
and groveling for more resources from the
higher ups

A Use Case

How About This…
As a developer at Notre Dame
I want to commit to owning the health of
our applications

So that I can understand the understanding
the state of our existing applications

A Use Case

As a strategist at Notre Dame
I want to hold you to that

So we can move on with this presentation

We created several
apps, many of them
Hydra applications.

These are some
observations…

Where we Are and Were

“the messy comp room: right” https://www.flickr.com/photos/blakespot

The apps were expensive to
maintain.

And brittle when we revisited
them.

Where we were

Used without permission from http://www.gluesociety.com/art/itwasntmeanttoendlikethis

What made
these apps
expensive?
and brittle?

Where we were

“Time is Money” https://www.flickr.com/photos/phphoto

Slow Tests…

impede
iterative
change

What Made Them Expensive?

“History of UK speed enforcement” https://www.flickr.com/photos/brizzlebornandbred

Or worse…

Untested code…

Because we are blind to what
we own

What Made Them Expensive?

“Edge of the earth” https://www.flickr.com/photos/supercake

Inconsistent styles
and idioms…

created higher
code-orientation cost

What Made Them Expensive?

GenCon 2012 “Cthulhu Dark” Character Journal by Jeremy Friesen

What Made Them Expensive?

New gets
priority over
old…

and time
between
changes is high

“Jealousy” https://www.flickr.com/photos/lukesaagi

Ongoing development
of dependencies…

creates an ever
increasing upgrade
cost

What Made Them Expensive?

“Abandoned Boat Meets Abandoned Bridge on Summerland Key” https://www.flickr.com/photos/1stpix_diecast_dioramas

We needed to
find a different
way.

We need a different way

“1939 Church Road, St George, Bristol BS5” https://www.flickr.com/photos/brizzlebornandbred

Conjecture the First

If changes are slow or painful to make, the overall
ownership cost will increase faster than the ownership
benefit.

Therefore ensure that changes can be made quickly and
painlessly.

Conjecture the Second

If setting aside our code and coming back to it later is
expensive, then we should never step away from that
code.

Maybe we can create tooling that revisits the code on our
behalf.

Testing must
be fast…

So we can keep
coding

Lowering Ownership Cost

“History of UK speed enforcement” https://www.flickr.com/photos/brizzlebornandbred

All code must be tested…

So we acknowledge the
existence of the code…

And accept ownership of that
code.

Lowering Ownership Costs

“Edge of the earth” https://www.flickr.com/photos/supercake

Adhere to a style
guide…

So that orienting to
the code is easier

Lowering Ownership Cost

GenCon 2012 “Cthulhu Dark” Character Journal by Jeremy Friesen

Lowering Ownership Cost

Drop in on your
old projects to
check up on
them…

So you know if
they are aging
poorly

“Jealousy” https://www.flickr.com/photos/lukesaagi

Insulate against
changes in your
dependencies…

by adopting well
known patterns for
dependency survival

Lowering Ownership Cost

“Abandoned Boat Meets Abandoned Bridge on Summerland Key” https://www.flickr.com/photos/1stpix_diecast_dioramas

That’s great…

but how do convert your
philosophical diatribe to
something actionable

Less Philosophy…More Actionable

“Amitabha” https://www.flickr.com/photos/h-k-d

Look at what you can control and set
some goals

I’ll use Sipity as an example

Less Philosophy…More Actionable

“001_365_01.01.2013” https://www.flickr.com/photos/plnaugle

On a
developer’s
machine the
test suite must
complete in 30
seconds or
less.

Less Philosophy…More Actionable

“History of UK speed enforcement” https://www.flickr.com/photos/brizzlebornandbred

Code coverage must be 100%
or the build is considered
broken

See git.io/hKRe for relevant commit

Less Philosophy…More Actionable

“Edge of the earth” https://www.flickr.com/photos/supercake

http://git.io/hKRe

Less Philosophy…More Actionable

GenCon 2012 “Cthulhu Dark” Character Journal by Jeremy Friesen

If Rubocop detects a
violation the build is
broken

Code review can focus
on solutions not styles

github.com/bbatsov/rubocop

https://github.com/bbatsov/rubocop

Less Philosophy…More Actionable

Run an
occassional
“Enduring
Commitment”
sprint to revisit
the old apps

“Jealousy” https://www.flickr.com/photos/lukesaagi

Know when your
dependencies have
changed…

by leaning on
gemnasium.com

Less Philosophy…More Actionable

“Abandoned Boat Meets Abandoned Bridge on Summerland Key” https://www.flickr.com/photos/1stpix_diecast_dioramas

You might say “But I have legacy
code”

So do we

Set some S.M.A.R.T. goals for
ownership

Dealing with Legacy

“001_365_01.01.2013” https://www.flickr.com/photos/plnaugle

Dealing with Legacy

“japanese robot” https://www.flickr.com/photos/31472241

Rubocop allows you to skip known
violations, but not allow new ones:

rubocop --auto-gen-config

Dealing with Legacy

“Samhain tablecloth” https://www.flickr.com/photos/hexeimhollerbusch/

Determine your
current code
coverage

And don’t let it
decrease

Dealing with Legacy

“Magnifying Glass” https://www.flickr.com/photos/auntiep

You know your
application’s state

And if you don’t

Create a task to
determine that state

Commit to Owning your App

We created the Commitment gem. As part of our test suite it runs:

● rubocop to enforce Ruby styles
● scss-lint to enforce SCSS styles
● jshintrb to enforce JS/Coffeescript styles
● simplecov to generate then enforce code coverage
● brakeman to enforce no known vulnerabilities

github.com/ndlib/commitment

https://github.com/ndlib/commitment

Write a Commitment Contract

We are exploring the usage of the Ruby Contracts gem to define and clarify interfaces:

http://egonschiele.github.io/contracts.ruby/

http://egonschiele.github.io/contracts.ruby/

Coping with Code

Software development is complicated, and we should
bring to bear any tooling that we can to help us with
keeping our code healthy.

I recommend reading “Extreme Programming Explained”
by Kent Beck and Cynthia Anders; It illuminates
numerous development strategies and their pitfalls, yet
combined they form a strong lattice of support.

Coping with Code

A book on my “to read list”:

“Your Code as a Crime Scene: Use Forensic Techniques to
Arrest Defects, Bottlenecks, and Bad Design in Your
Programs” by Adam Tornhill

https://pragprog.com/book/atcrime/your-code-as-a-cri
me-scene

Conclusion

“001_365_01.01.2013” https://www.flickr.com/photos/plnaugle

In conclusion
As a strategic developer

I want to, and as a professional should,

Accept ownership of my apps

Improve my ownership practices

So that I can rise to the challenges ahead
of me

Thank You

Jeremy Friesen
Digital Library Frameworks Specialist

University of Notre Dame

jfriesen@nd.edu

@jeremyfriesen

github.com/jeremyf

ndlib.github.io

Presentation at goo.gl/G6oN89

mailto:jfriesen@nd.edu
https://twitter.com/jeremyfriesen
https://github.com/jeremyf
https://ndlib.github.io
http://goo.gl/G6oN89

