

Understanding the Hydra testing stack
● I want to understand Hydra better

● I want to know more about Hydra's Architecture (i.e. the Hydra stack)

● How is Hydra tested?

● How do I create Hydra-framework-friendly fixtures

Resources

● Hierarchy of Promises

● ProjectHydra on Github

● ProjectHydra Labs on Github

Dive into a Git Repository

Look at ​ActiveFedora's Badges

● Build Status​ - The gem is tested via ​Travis-CI.org

● Gem Version​ - The gem is published to and distributed via ​Rubygems.org

● Dependencies​ - The gem's dependencies are monitored by ​Gemnasium

● Code Coverage​ - The gem's test coverage is gathered and reported by ​Coveralls.io

These are all free services (for open source projects) that Hydra leverages.

There are other resources available for open source projects:

● Code Coverage and potential Code Smells can be gathered by ​Codeclimate.com​.

● Documentation suggestions can be gathered by ​Inch-CI.org

● Documentation is gathered at ​Rubydoc.info

● Monitor for style guide violations via ​HoundCI.com

Tour of the Hydra Testing Stack by Jeremy Friesen @ ​https://goo.gl/R5yUxF

1 of 10

https://goo.gl/ES0nR2
https://github.com/projecthydra
https://github.com/projecthydra-labs
https://github.com/projecthydra/active_fedora#description
https://travis-ci.org/projecthydra/active_fedora
https://travis-ci.org/
https://rubygems.org/gems/active-fedora
https://rubygems.org/
https://gemnasium.com/projecthydra/active_fedora
https://gemnasium.com/
https://coveralls.io/github/projecthydra/active_fedora
https://coveralls.io/
https://codeclimate.com/
https://inch-ci.org/
https://rubydoc.info/
https://houndci.com/
https://goo.gl/R5yUxF

For most Hydra projects, look in the .travis.yml file at the root of the project. If there is a script:

key, that is how TravisCI will build and test the gem and how you might go about doing it. In

many cases the default rake command will build and test the gem.

Reviewing Tests

● Does this need to be tested?

● Are they sufficient?

● Are they testing the right thing?

● Are they in the right spot / properly organized?

● Are they maintainable?

There are two fundamental questions to when thinking about tests.

● How will I verify I have done the right thing?

● How will I verify I have made it the right way?

Before you begin writing production code, ask those two questions and formulate your answers.

Those answers are your test plan. In many cases you can automate your test plan.

Done the Right Thing

These are your acceptance tests. You are testing the system from the outside in. They will be

slow as they must load the whole system.

Aim for only a few of these; Perhaps even outside of your applications code. ​Fitnesse​ is a great

option for acceptance tests.

Made the Right Way

These are your unit tests. You are testing from within the system. They should be fast so you

have a quick feedback loop. You will have many of these.

Treat them as documentation that expresses intent.

Tour of the Hydra Testing Stack by Jeremy Friesen @ ​https://goo.gl/R5yUxF

2 of 10

http://www.fitnesse.org/
https://goo.gl/R5yUxF

Rules of Engagement

Establish your allowable threshold for Code Coverage. On my projects, I require 100% code

coverage under unit tests.

For each file in ​app/​ and ​lib/​, there will exist a corresponding file in ​spec/​. In Atom (via

rails-rspec​) and Sublime (via ​Rails Go to Spec​) I map ​Cmd+.​ to jump between live and

spec files. This command creates the file if one does not exist.

Unit tests should test a single class and how it collaborates with other objects. Collaborators

should be injected into either the method you are testing or as part of object instantiation. You

will begin to tease apart the interface of various objects.

Use a code style enforcement tool such as ​Rubocop​ and HoundCI. Your team should agree on

the style guide and stick to it. Any violations should be reviewed and accepted.

By using automated enforcement of style guides, your code review process can focus on what is

being added or changed; And not indentation, file size concerns, unused variables, etc.

At Notre Dame, we use the ​Commitment gem​ to say the code is broken if:

● A test fails (via ​RSpec​)

● Code coverage is not 100% (via ​SimpleCov​)

● A vulnerability is detected (via ​Brakeman​)

● SCSS does not pass a linter (via ​scss-lint​)

● JS does not pass a linter (via ​jshintrb​)

● A style violation is detected (via ​Rubocop​ and our ​.hound.yml​ config)

I go a step further run a ​pre-push​ git hook that runs ​rake​ for our applications. On a failure,

git will not allow me to push the changes. (I can get around that with ​git push --no-verify​)

Tour of the Hydra Testing Stack by Jeremy Friesen @ ​https://goo.gl/R5yUxF

3 of 10

https://atom.io/packages/rails-rspec
https://github.com/sporto/rails_go_to_spec
https://github.com/bbatsov/rubocop
https://github.com/ndlib/commitment
https://rspec.info/
https://github.com/colszowka/simplecov
https://github.com/presidentbeef/brakeman
https://github.com/brigade/scss-lint
https://github.com/stereobooster/jshintrb
https://github.com/bbatsov/rubocop
https://goo.gl/R5yUxF

Reviewing Pull Requests

You are reviewing both the commit message and the code that has changed. Take a moment and

reorient yourself.

● Does the commit message convey why something was done?

● Can you read the code and understand how its working?

● Are there comments saying why a possibly confusing choice was made?

● Does each spec's description jive with the code of the spec?

● Does it look like the tests are testing one thing?

● Are the tests "creating the whole world" just to verify something rather small?

● What questions come to mind when you read the changes?

Ask these questions of yourself and engage in the pull request process.

Tips and Tricks for Testing

● Maintainability

● RSpec syntax

● Speed kills

● Mocking & Stubbing

● Capybara v. RSpec v. Cucumber

● Composition over Inheritance

● Narrow Interfaces

Maintainable code must be easy to refactor and extend. Confident refactoring of code requires

confidence in your test suite and quick feedback. Therefore your test suite must run fast and

have good coverage.

Hint: If an object is hard to test, break it apart.

Tour of the Hydra Testing Stack by Jeremy Friesen @ ​https://goo.gl/R5yUxF

4 of 10

https://goo.gl/R5yUxF

With RSpec 3, I make use of the double method. I use doubles to be a test proxy for a more

complicated collaborator. It is possible (and I do) go crazy with doubles. In doing so I begin

thinking about the interfaces of the collaborators.

In using these methods I'm creating many small underlying classes that can be reused and

repurposed. At the same time, I'm creating outward facing classes that expose an API for public

interface.

Throughout the unit level refactoring, I often won't run the Acceptance tests; They are too slow.

However they are useful as they work through the system from the outside.

Acceptance tests that I run will leverage ​Capybara​ to handle the web requests. I will also take the

time to make Page objects via​SitePrism​. Page objects allow.

I don't write Cucumber tests​ because in my experience the audience and those writing the

Cucumber tests are the same people. And there are better tools that require far less overhead.

Why Do My Tests Take Forever to Get Started?

First, many Hydra components require that Jetty is started (to make Solr and Fedora available).

Second, your tests are likely booting up the entire Rails ecosystem and all of its dependencies.

There are some things you can do to help out.

At the top of your spec files you see the ubiquitous ​require "spec_helper"​. If you don't see it,

check ​.rspec​ in the root of your project. That directive says to load the spec_helper file.

But you can create custom require files and decide which one to use in your tests. In Cogitate, I

have the following:

● spec_fast_helper.rb

● spec_active_record_helper.rb

● rails_helper.rb

Tour of the Hydra Testing Stack by Jeremy Friesen @ ​https://goo.gl/R5yUxF

5 of 10

https://github.com/jnicklas/capybara
https://github.com/natritmeyer/site_prism
https://github.com/jeremyf/take-on-development/blob/master/chapters/acceptance_testing.md#cucumber
https://github.com/ndlib/cogitate/blob/master/spec/spec_fast_helper.rb
https://github.com/ndlib/cogitate/blob/master/spec/spec_active_record_helper.rb
https://github.com/ndlib/cogitate/blob/master/spec/rails_helper.rb
https://goo.gl/R5yUxF

Helper Relative Load Time

spec_fast_helper.rb x1

spec_active_record_helper.rb x2

rails_helper.rb x5 or more

This was tested in Cogate via: ​time rspec -r spec/<helper_filename>

spec/lib/cogitate/client_spec.rb

Tour of the Hydra Testing Stack by Jeremy Friesen @ ​https://goo.gl/R5yUxF

6 of 10

https://goo.gl/R5yUxF

Examples

Below are a few RSpec examples. First a simple scenario that highlights dependency injection

and mocks.

class​ ​HelloWorld

 ​def​ ​print​(buffer: default_buffer)

 buffer.puts ​"Hello World"

 ​end

 ​private

 ​def​ ​default_buffer

 $stdout

 ​end

end

require​ ​'rspec'

I find it very helpful for testing dependency injection

require​ ​'rspec/its'

RSpec​.describe ​HelloWorld​ ​do

 let(​:buffer​) { double(​puts:​ ​true​) }

 subject { described_class.​new​ }

 it ​'will output to the given buffer'​ ​do

 subject.print(​buffer:​ buffer)

 expect(buffer).to have_received(​:puts​).with(​"Hello World"​)

 ​end

 it ​'will output to $stdout if none is given'​ ​do

 expect($stdout).to receive(​:puts​).with(​"Hello World"​)

 subject.print

 ​end

end

Tour of the Hydra Testing Stack by Jeremy Friesen @ ​https://goo.gl/R5yUxF

7 of 10

https://goo.gl/R5yUxF

A more complicated scenario that highlights dependency injection with ActiveRecord objects.

class​ ​CreateWork

 ​def​ ​initialize​(attributes:, validator: default_validator, ​**​collaborators)

 ​self​.attributes ​=​ attributes

 ​self​.validator ​=​ validator

 ​self​.persister ​=​ collaborators.fetch(​:persister​) { default_persister }

 ​self​.notifier ​=​ collaborators.fetch(​:notifier​) { default_notifier }

 ​end

 ​def​ ​call

 ​return​ ​false​ ​unless​ validator.call(attributes)

 work ​=​ persister.call(attributes)

 notifier.call(work)

 work

 ​end

 ​private

 ​attr_accessor​ ​:attributes​, ​:persister​, ​:notifier​, ​:validator

 ​def​ ​default_validator

 ​Work​::​Validator​.method(​:valid?​)

 ​end

 ​def​ ​default_persister

 ​Work​.method(​:create!​)

 ​end

 ​def​ ​default_notifier

 ​Notifier​.method(​:deliver_work_created_message!​)

 ​end

end

Tour of the Hydra Testing Stack by Jeremy Friesen @ ​https://goo.gl/R5yUxF

8 of 10

https://goo.gl/R5yUxF

require​ ​'rspec'

require​ ​'rspec/its'​ ​# https://github.com/rspec/rspec-its

RSpec​.describe ​CreateWork​ ​do

 let(​:attributes​) { { ​name:​ ​'A Book'​ } }

 let(​:persister​) { double(​'Persister'​, ​call:​ work) }

 let(​:validator​) { double(​'Validator'​, ​call:​ ​false​) }

 let(​:notifier​) { double(​'Notifier'​, ​call:​ ​true​) }

 let(​:work​) { double(​'The Work'​) }

 subject ​do

 described_class.​new​(

 ​attributes:​ attributes, ​persister:​ persister,

 ​validator:​ validator, ​notifier:​ notifier

)

 ​end

 its(​:default_validator​) { should respond_to(​:call​) }

 its(​:default_persister​) { should respond_to(​:call​) }

 its(​:default_notifier​) { should respond_to(​:call​) }

 context ​'with invalid data'​ ​do

 before { allow(validator).to receive(​:call​).with(attributes).and_return(​false​) }

 it ​'will return false'​ ​do

 subject.call

 expect(validator).to have_received(​:call​).with(attributes)

 ​end

 it ​'will not attempt to persist the data'​ ​do

 subject.call

 expect(persister).to_not have_received(​:call​)

 ​end

 it ​'will not attempt to notify'​ ​do

 subject.call

 expect(notifier).to_not have_received(​:call​)

 ​end

Tour of the Hydra Testing Stack by Jeremy Friesen @ ​https://goo.gl/R5yUxF

9 of 10

https://goo.gl/R5yUxF

 ​end

 context ​'with valid data'​ ​do

 before { allow(validator).to receive(​:call​).with(attributes).and_return(​true​) }

 it ​'will call the validator'​ ​do

 subject.call

 expect(validator).to have_received(​:call​).with(attributes)

 ​end

 it ​'will call the persister'​ ​do

 subject.call

 expect(persister).to have_received(​:call​).with(attributes)

 ​end

 it ​'will call the notifier'​ ​do

 subject.call

 expect(notifier).to have_received(​:call​).with(work)

 ​end

 it ​'will return the work'​ ​do

 expect(subject.call).to eq(work)

 ​end

 ​end

end

Tour of the Hydra Testing Stack by Jeremy Friesen @ ​https://goo.gl/R5yUxF

10 of 10

https://goo.gl/R5yUxF

