


>
>
>
>





● British Library
● National Museum of Scotland
● Museum of London Archaeology
● The British Museum
● Tate Galleries
● Kew Gardens
● Pacific University (Oregon)



Hyku REST API frontend
(ReactJS)

K8s ingress
(Traefik LB)

SSL termination
(LetsEncrypt)

Fedora
Commons

Repo
importer
(Python)

S3 storage

Maintained by UP Maintained by Samvera External service



State of the conversation:

● Samvera 2020: Tom Johnson’s “Hyraxes make their homes among 
the clouds”

● Github PR on samvera/hyrax “Helm charts for Hyrax and FCRepo 
#4496”

●

https://sc2020.sched.com/event/eeio/hyraxes-make-their-homes-among-the-clouds
https://sc2020.sched.com/event/eeio/hyraxes-make-their-homes-among-the-clouds
https://github.com/samvera/hyrax/pull/4496
https://github.com/samvera/hyrax/pull/4496
https://bl.iro.bl.uk/work/b0f15cfa-8873-47aa-b0a1-30fb9d8a1540


Hyku components



Hyku components



3. Configuration (k8s configmaps)
10. Dev/prod parity

4. Backing services (k8s services)
7. Port binding (Backend services + frontend services)

5. Build / release / run (GitLab / Helm / k8s)

8. Concurrency and scaling (Horizontal and Vertical Pod Autoscaler)

11. Logs & visibility (Google Stackdriver + Sentry)

https://12factor.net by Heroku and Cloud Foundry

https://12factor.net


ENV YAML k8s 
Configmap Helm release

rendered
as

included
in

Challenges:

● upgrade from Helm 2 to Helm 3
● we started running Hyku on k8s 1.11 -- API upgrades on 1.16 meant that we had 

to use Helm-mapkubeapis (https://github.com/hickeyma/helm-mapkubeapis)

test
YAML

prod 
YAML

https://github.com/hickeyma/helm-mapkubeapis


Hyku REST 
API

frontend
(ReactJS)

k8s ingress
(Traefik LB)

SSL termination
(LetsEncrypt)

k8s ingress
(Traefik LB)

SSL termination
(LetsEncrypt)

frontend 
user

admin 
user

● Frontend / backend are 
completely decoupled 
(independent deployments)

● Port binding happens 
inside the k8s Service

k8s 
service

k8s 
service

Challenge:
Replace / update the Traefik load 
balancer when SSL certs are obtained 
through LetsEncrypt

○ Run multiple load balancers 
for the same service?



AKA GitLab / Helm / Kubernetes

Bumpversion
(creates git tag)

pushes Helm 
chart to

pushes Docker 
image to

private Helm registry
(Google Cloud Storage)

private Docker registry
(Google Container Registry)

creates Helm 
release on

k8s cluster



Hyku

Sidekiq
workers

Solr Cloud
nodes

Redis HA

Horizontal Pod Autoscaler

Horizontal Node scaling

PostgreSQL

Google Cloud Storage

H

V

Cluster autoscaler



Uptime 99.99%+ in last 12 months

Monitoring on
Google Stackdriver



Google Stackdriver logging, metrics and alerting





“An import without an export is a lie.” [Anonymous]

API

RDF

Bulkrax?

Bonus slide: data I/O



Bonus slide: data I/O



Frontend technologies and accessibility

https://translations.ubiquity.press
Full frontend+backend localisation, with collaborative
translation platform (Weblate)

Bonus slide: localisation

https://translations.ubiquity.press


Bonus slide: why Google Cloud and not Amazon AWS?

1. Google invented Kubernetes: cloud services experts agree that Google 
Cloud has the best Kubernetes technology on the market, with faster 
updates and better uptimes -- source [1]

2. Data distribution: Google Cloud Storage has superior download 
performance compared to AWS S3 on large datasets -- source [2]

[1] https://medium.com/faun/which-cloud-provider-is-best-for-managed-kubernetes-7de56f468a27
[2] http://blog.zachbjornson.com/cloud-storage-performance.html

lower is better

https://medium.com/faun/which-cloud-provider-is-best-for-managed-kubernetes-7de56f468a27
http://blog.zachbjornson.com/2015/12/29/cloud-storage-performance.html


Common Hyku Customizations
● Work types
● UI changes (branding, etc.)
● New features
● Bug fixes
● Configuration
● ...

How to add customizations to a Rails application in an 
effective and sustainable way?



Managing 
customizations 
via forking



Managing 
customizations 
via plugins



Three Layers:
● Hyku
● Plugins
● Application-specific customizations 

as a monolithic plugin

An all plugin approach to 
customizations gives us:
● Plug and play
● Common customizations as 

reusable components
● Independent versioning of 

customizations
● Allows for reuse by others
● Faster integration of upstream 

changes
● Easier to contribute upstream



Application build pipeline
1. Clone helm chart templates
2. Clone hyku
3. Add plugins

a. Inject plugin gems into Gemfile
b. Bundle install
c. Run plugin generators
d. Copy initializers and rails environment config

4. Build docker image and push to container registry
5. Package helm charts and push to helm repository




