
Meadow: An Introduction To

Northwestern University's New Digital

Repository Application Built With Elixir,

React, and GraphQL In The Middle

Brendan Quinn

Senior Developer

Northwestern University Libraries

1

(https://github.com/nulib/meadow)

https://github.com/nulib/meadow

● Adam Arling: front end senior developer

● Divya Katpally: front end developer

● Michael Klein: lead developer

● Brendan Quinn: senior developer

● Veronica Robinson: service owner (welcome to the team!)

● David Schober: team lead and project/product manager

● Karen Shaw: senior developer and scrum lead

Special shout out to Laura Alagna, our Digital Preservation

Librarian, who recently moved to a new position outside the

library. We wish you the best!

Team Members

2

Project Goals

3

Project Goals

- Preservation-first design

- Fast and scalable ingest pipeline

- Ability to batch edit metadata

- Concurrent

- Fault-tolerant

- “Nice” development environment

5

Architecture Overview

6

Architecture Overview

- Elixir backend: https://elixir-lang.org/

- Phoenix Framework: https://www.phoenixframework.org/

- Javascript frontend

- React: https://reactjs.org/

- ReactiveSearch: https://opensource.appbase.io/reactivesearch/

- GraphQL API

- Absinthe: https://absinthe-graphql.org/

- Search engine

- Elasticsearch: https://www.elastic.co/elasticsearch/

- Amazon Web Services: https://aws.amazon.com/

- API Gateway, ECS, AWS Lambda, S3, SNS, SQS, (& more alphabet soup…)

- Docker containerization: https://www.docker.com/

7

https://elixir-lang.org/
https://www.phoenixframework.org/
https://reactjs.org/
https://opensource.appbase.io/reactivesearch/
https://absinthe-graphql.org/
https://www.elastic.co/elasticsearch/
https://aws.amazon.com/
https://www.docker.com/

Elixir + Phoenix

|> GraphQL + Absinthe

|> Javascript + React

8

Architecture Overview

AWS Cloud

ECS Container Task

PostgresQL DB

LDAP server

GraphQL API

Phoenix/Elixir Backend

React Frontend

Serverless IIIF

Lambda

Elasticsearch

AWS Simple Queue

Service

AWS S3

AWS Simple Notification

Service

Metadata + Data = “MeadowData”

10

Data Model

11

The challenge

● 50+ descriptive and administrative properties on Works

● 15+ properties backed by external authorities or local controlled lists of terms

● Complex UI components and backend functionality needed to be built out to support this amount

of information in logical and understandable ways to end users.

Data Model

12

The implementation

● Driven by Ecto, Elixir’s most prominent library for data mapping and database interaction.

● We’re using the PostgreSQL implementation of the ecto_sql library (you can use Ecto without

any databases if you just need changesets for data mapping or validation).

● Relationships between Work, FileSet, & Collections schemas implemented using relational data

functionality provided by Ecto (“has_many”, “belongs_to”, etc.)

● We make use of Ecto’s embedded schemas to store Administrative and Descriptive metadata as

jsonb directly on Work and FileSet records.

● Ecto queries and changesets underpin our GraphQL API for building out frontend queries and

mutations.

Batch Ingest

13

Previously Recorded Demo Slide!

14

15

16

Ingest Sheet Processing

Ingest Spreadsheet Processing

17

Sequins & Broadway

18

Sequins wraps the processing pipeline of an Elixir library called Broadway SQS to allow for the

simple creation of multi-stage “SQS -> Broadway -> SNS” pipelines.

● Provides utilities to create the queues, topics, and subscriptions required to support the

processing pipeline.

● Sets up pipeline infrastructure based on a list of queue/topic/subscription specifications

● Defines a standard behaviour for pipeline actions

○ only need to define a “process” function for each action

○ must return a status (:ok, :retry, :error) with optional data (in our case, a file_set_id)

● Allows flexible configuration options for concurrency

● Is a supervised Elixir application with built-in fault tolerance and error recovery. If a process

crashes for any reason, it can be recovered back to a known “good” state.

Another Previously Recorded Demo Slide!

20

21

TODO

22

