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( https://github.com/nulib/meadow )

https://github.com/nulib/meadow


● Adam Arling: front end senior developer

● Divya Katpally: front end developer

● Michael Klein: lead developer

● Brendan Quinn: senior developer

● Veronica Robinson: service owner (welcome to the team!)

● David Schober: team lead and project/product manager

● Karen Shaw: senior developer and scrum lead

Special shout out to Laura Alagna, our Digital Preservation 

Librarian, who recently moved to a new position outside the 

library. We wish you the best!

Team Members
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Project Goals
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Project Goals

- Preservation-first design

- Fast and scalable ingest pipeline

- Ability to batch edit metadata

- Concurrent

- Fault-tolerant

- “Nice” development environment
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Architecture Overview
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Architecture Overview

- Elixir backend: https://elixir-lang.org/

- Phoenix Framework: https://www.phoenixframework.org/

- Javascript frontend

- React: https://reactjs.org/

- ReactiveSearch: https://opensource.appbase.io/reactivesearch/

- GraphQL API

- Absinthe: https://absinthe-graphql.org/

- Search engine

- Elasticsearch: https://www.elastic.co/elasticsearch/

- Amazon Web Services: https://aws.amazon.com/

- API Gateway, ECS, AWS Lambda, S3, SNS, SQS, (& more alphabet soup…)

- Docker containerization: https://www.docker.com/
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Elixir + Phoenix

|> GraphQL + Absinthe

|> Javascript + React
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Architecture Overview



AWS Cloud

ECS Container Task

PostgresQL DB

LDAP server

GraphQL API

Phoenix/Elixir Backend

React Frontend

Serverless IIIF 

Lambda

Elasticsearch

AWS Simple Queue 

Service

AWS S3

AWS Simple Notification 

Service



Metadata + Data =  “MeadowData”
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Data Model
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The challenge

● 50+ descriptive and administrative properties on Works

● 15+ properties backed by external authorities or local controlled lists of terms

● Complex UI components and backend functionality needed to be built out to support this amount 

of information in logical and understandable ways to end users.



Data Model
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The implementation

● Driven by Ecto, Elixir’s most prominent library for data mapping and database interaction.

● We’re using the PostgreSQL implementation of the ecto_sql library (you can use Ecto without 

any databases if you just need changesets for data mapping or validation).

● Relationships between Work, FileSet, & Collections schemas implemented using relational data 

functionality provided by Ecto (“has_many”, “belongs_to”, etc.)

● We make use of Ecto’s embedded schemas to store Administrative and Descriptive metadata as 

jsonb directly on Work and FileSet records.

● Ecto queries and changesets underpin our GraphQL API for building out frontend queries and 

mutations.



Batch Ingest
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Previously Recorded Demo Slide!
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Ingest Sheet Processing



Ingest Spreadsheet Processing
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Sequins & Broadway
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Sequins wraps the processing pipeline of an Elixir library called Broadway SQS to allow for the 

simple creation of multi-stage “SQS -> Broadway -> SNS” pipelines.

● Provides utilities to create the queues, topics, and subscriptions required to support the 

processing pipeline.

● Sets up pipeline infrastructure based on a list of queue/topic/subscription specifications

● Defines a standard behaviour for pipeline actions

○ only need to define a “process” function for each action

○ must return a status (:ok, :retry, :error) with optional data (in our case, a file_set_id)

● Allows flexible configuration options for concurrency

● Is a supervised Elixir application with built-in fault tolerance and error recovery. If a process 

crashes for any reason, it can be recovered back to a known “good” state.





Another Previously Recorded Demo Slide!
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# TODO
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