
Build a Simple Media-streaming Rails App

Jon Cameron
Phuong Dinh

Avalon Media System
Indiana University

Samvera Connect 2020



Setup Time

https://github.com/avalonmediasystem/connect2020-workshop/



Streaming Media Overview



Why a Streaming Server?

• Performance

• Scale

• Convenience

• Smooths away the hard parts of delivering media



What’s out there?

• Local vs. cloud-hosted

• Wowza

– Popular enterprise solution 

• Amazon CloudFront

• Red5

– Open source, often used for Flash

• HTTP Server + HLS

– Ex: Nginx + HLS module



Protocols

• HLS – HTTP Live Streaming (Apple)

• MPEG-DASH

• RTMP

• Progressive Streaming

• Others...

• Other concerns
– Adaptive Streaming

• Most are over HTTP, some don’t have to be



HLS
HTTP Live Streaming

• The most popular format!

• Breaks the media into chunks

• Uses M3U8 file to list and provide metadata for chunks

• Adaptive streaming: multiple bandwidth levels can be added

• Native support almost exclusively in Apple world



MPEG-DASH 
(Dynamic Adaptive Streaming over HTTP)

• Dynamic Adaptive Streaming over HTTP (DASH)

• Favored and used by Google

• Developed by MPEG

• ISO Standard

• Sends media in chunks, very similar to HLS

• Codec/container agnostic

• Much more native hardware/OS support



RTMP
Real-time Messaging Protocol

• It’s Flash

• Proprietary and convoluted

• Remember Flash?

• RIP



Progressive streaming

• Gets the job done

• Your media is just a resource available over HTTP

• File downloads over time

• Doesn’t scale well



2020 Bitmovin Video Developer Report



Codecs

• H.264

• VP9 

• AV1

• Other friends



H.264

• The ubiquitous standard of the HD era

• Another hit from MPEG

• The “big dog” of video encoding

• Lots of options, good quality to file size

• Patent-encumbered

• Many encode/decode implementations



VP9

• Google’s alternative to H.265

• Better quality at lower file sizes...

• ...but less support across the board

• Native support in Google hardware



AV1

• The next big thing

• Better quality at lower sizes than all of the above

• Shepherded by the Alliance for Open Media

• Early implementation efforts underway

• Standards!!



2020 Bitmovin Video Developer Report



JavaScript Video Players

• Our friends

• Abstract away the inconsistencies of format and protocol

• Uses MSE (Media Source Extensions) in the browser 

• dynamically construct media streams for <audio> and <video>

– https://www.w3.org/TR/media-source/



Walkthrough of Avalon FFmpeg Presets

• Removing metadata

• Resolution

• Bitrates

• Mixdowns

• ... and more!



FFmpeg Options: Audio Encoding (high quality)

• -map_chapters -1 

• -ac 2 

• -ar 44100 

• -ab 320k

• -vn

• -acodec aac

• -strict -2

Remove chapter metadata

Stereo Mixdown

Standard audio sample rate

Bitrate: 320 kbps

Remove any existing video data

Use the AAC codec

Play nice with older FFmpeg versions



FFmpeg Options: Audio Encoding (medium quality)

• -map_chapters -1 

• -ac 2 

• -ar 44100 

• -ab 128k

• -vn

• -acodec aac

• -strict -2

Remove chapter metadata

Stereo Mixdown

Standard audio sample rate

Bitrate: 128 kbps

Remove any existing video data

Use the AAC codec

Play nice with older FFmpeg versions



FFmpeg Options: Video Encoding

• -map_chapters -1

• -vf
– yadif=0:-1:1

– scale=trunc(oh*dar/2)*2:min(ih\\,1080) 

• -vcodec libx264 

• -preset fast 

• -profile main 

• -level 3.1

• -pix_fmt yuv420p 

Remove chapter metadata

Video filtering options

Apply de-interlacing filter for interlaced media

Scale video down to a max of 1080px high

Use the x.264 library to encode h.264 video

Speed to compression ratio

Use H.264 “main” profile (profile defines capability)

Profile level specifying a max data rate of 14 Mbit/s

Set a 4:2:0 color space (compatibility!)



FFmpeg Options: Video Encoding

• -b 3M 

• -maxrate 3M 

• -bufsize 4M 

• -threads 0 

• -force_key_frames "expr:gte(t,n_forced*2)"

• -acodec aac -ab 192k -ar 44100 

• -movflags faststart

• -strict -2

Bitrate

Bitrate maximum

Buffer size
Use as many CPU threads as are available

Set Key Frames

Audio Encoding Options

Move key information to the beginning of the file

Play nice with older FFmpeg versions



Authorization

• Securing those streams

• Generally token-based (can also be cookie-based)

• Authentication brokering between client and server

• Often disabled by default
“You can use token authentication to make the stream 
playback URL unavailable after a certain length of 
time, to limit access to approved IP addresses, or 
apply other restrictions. Token authentication 
prevents playback URLs from being shared by 
unauthorized links or player hijacking attacks.”
~ Wowza Docs



Workshop Time


