
Building a performant and accessible replacement for

CONTENTdm using Valkyrie

Adam Wead • awead@psu.edu • amsterdamos • • awead

Samvera Connect - October 11, 2018

mailto:awead@psu.edu

Overview
1. Vital Statistics: Plan for replacing CONTENTdm with CHO
2. Using Valkyrie: Why we chose it and its impact so far
3. Building CHO: What we've done so far

Vital Statistics
Whats, whos, hows, and whys

CHO: Cultural Heritage Object (Repository)

Nathan Tallman, product owner
Adam Wead, technical lead
Carolyn Cole, developer
Michael Tribone, user-interface designer

+ Numerous stakeholders!

The Big Picture
• Export from CONTENTdm
• Remediate metadata in csv using OpenRefine
• Import collections into CHO via bags and csv
• Further metadata work, adding new content
• Export updated bags and metadata for preservation

Schedule
• Started October 25, 2017
• February 2018: 6 weeks of CHO + 4 weeks of Scholarsphere
• MVP1 mini-releases after each 6-week cycle (three sprints)
• Currently working on MVP 4 of 7 (there will be more)
• complete MVP by fall 20192

• first production release in 2020

1. MVP = minimum viable product
2. https://github.com/psu-libraries/cho/milestones

https://github.com/psu-libraries/cho/milestones

Using Valkyrie
The metrics told us we should.

Performance Limitations in Hyrax (2017)
Comparing Valkyrie and Hyrax• Penn State has collections

with 385K+ items
• Hyrax 1.0 was unable to

support this number
• This includes the updated

Solr configuration1

• Using Postgres, Valkyrie
proved to be more
performant

1. http://awead.github.io/fedora-tests

http://awead.github.io/fedora-tests

Comparing CHO: Then vs. Now
• CHO lags behind our original

data sample
• Time per work is flat for both
• Original Valkyrie sample

took 7 minutes
• CHO took 43 minutes
• Network latency could be an

issue: local Solr vs. VM

Valkyrie versus CHO MVP 31

1. http://awead.github.io/cho-benchmarks

http://awead.github.io/cho-benchmarks

Opportunities
• New stuff: functional Ruby, dry-ruby, transactions
• Re-envisioning code and practices
• Collaborative sprints with Princeton

• Single-valued attributes
• Optimistic locking

• LOOKING FOR MORE ADOPTERS!!!!

Challenges
• No Hyrax "freebies"

• UI
• PCDM Modeling
• Derivative generation
• Characterization

• Dynamic property definitions
• IIIF integration and Universal Viewer

Choosing to confront problems we know we can solve versus
problems we do not, or cannot solve.

Building CHO

The CSV "API"
• Every component has a csv interface
• Updating and creating collections and works via csv import and

export
• Creating works with files from bags
• Defining the properties on resources
• Defining a property's behaviors

• Controlled vocabulary
• Validation
• Transformation
• Default values

The Data Dictionary
• Metadata specialists define

fields characteristics
• Seeded into CHO as Valkyrie

resources
• Dynamically assigned to

application resources
(works, collections, etc.)

• Selectively applied to all
resource, or work subtypes

Dictionary CSV File

https://github.com/psu-libraries/cho/blob/master/config/data_dictionary/data_dictionar
y_production.csv

https://github.com/psu-libraries/cho/blob/master/config/data_dictionary/data_dictionary_production.csv
https://github.com/psu-libraries/cho/blob/master/config/data_dictionary/data_dictionary_production.csv

Loading fields on a change set:

Dynamic Field Definitions
• Everything is defined on

resources, change sets, and
SolrDocument

• Schemas "filter" fields for
editing/display

• Loaded at runtime
• Eventually will be

changeable in a live
application

• Still WIP!
https://github.com/psu-libraries/cho/blob/master/app/cho/data_dictionary/fields_for_ch
ange_set.rb

https://github.com/psu-libraries/cho/blob/master/app/cho/data_dictionary/fields_for_change_set.rb
https://github.com/psu-libraries/cho/blob/master/app/cho/data_dictionary/fields_for_change_set.rb

Bags
• Uploaded as a zip
• Validate structure and

integrity
• Create multiple works with

one or more file sets
• Generate derivatives as

needed
• Determines file set use
• CSV supplies the metadata

https://github.com/psu-libraries/cho/wiki/File-Specifications#simple-work-folder-of-
manuscript-materials-mvp

https://github.com/psu-libraries/cho/wiki/File-Specifications#simple-work-folder-of-manuscript-materials-mvp
https://github.com/psu-libraries/cho/wiki/File-Specifications#simple-work-folder-of-manuscript-materials-mvp

Benchmarks
• Benchmarking is built into the codebase
• Simulate collections of any size
• Randomized metadata using the Faker gem
• Random binary files to simulate storage
• Run as rake tasks
• Reports individual creation times for use in charts and graphs
• Total time used to gauge performance impact

Benefits of Benchmarking
• Measure performance results after each MVP mini-release
• Identify performance impacts early
• Avoid bad architecture or code decisions
• Creates a complete feedback loop from coding to release
• Identify devops needs early
• Ex: IVP6 firewall issue was impacting performance in MVP 2

Accessibility First
• Penn State Policy UL-AD151 requires WCAG 2.02 AA compliance
• Approved in in 2005
• WCAG 2.13 published in June 2018
• No Javascript (for now)
• Maximize client-side HTML5, ex. datalist elements for selects
• Ensure we are meeting standards with each release
• Manual tests involving

• WAVE accessibility toolkit
• Keyboard navigation
• Screen-reader integration with JAWS and MacOS Voiceover

1. https://libraries.psu.edu/policies/ul-ad15
2. Web Content Accessibility Guidelines 2.0 https://www.w3.org/TR/WCAG20/
3. Web Content Accessibility Guidelines 2.1 https://www.w3.org/TR/WCAG21/

https://libraries.psu.edu/policies/ul-ad15
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG21/

No Active Record
• Valkyrie resources are used throughout
• AR used only for gem dependencies such as Devise
• Consistency: all resources have the same interface
• Why support multiple database abstractions in the same

application?

Walking the Path...
• When deciding on change in code, dependency, technique, or

practice, take each decision to its complete conclusion
• Sometimes things start to look worse before they can look better
• Not making a choice is itself a choice
• Example: Webpacker in Rails

• Tested React, Angular, Elm, Vue
• Ultimately decided "none"

• Require accessible interfaces using standard HTML5
• Leverage Javascript via progressive enhancement

Questions?

Thank You!
Thanks to the Samvera Connect 2018 committee, the University of
Utah, and everyone else who made the Connect 2018 conference
possible.
Special thanks to Penn State University Libraries and my team at
DSRD.
Shout outs to the Princeton dev team!

Notes and Links
Valkyrie: https://github.com/samvera-labs/valkyrie
CHO: https://github.com/psu-libraries/cho
Samvera Connect 2017 Talk:
http://awead.github.io/presentations/fedora-tests
Valkyrie Performance Testing: http://awead.github.io/fedora-tests
CHO Performance Testing: http://awead.github.io/cho-benchmarks
Dry Ruby: https://dry-rb.org/
Penn State Policy UL-AD15 on Web Accessibility:
https://libraries.psu.edu/policies/ul-ad15

https://github.com/samvera-labs/valkyrie
https://github.com/psu-libraries/cho
http://awead.github.io/presentations/fedora-tests
http://awead.github.io/fedora-tests
http://awead.github.io/cho-benchmarks
https://dry-rb.org/
https://libraries.psu.edu/policies/ul-ad15

