
Case studies in workflow:
Three approaches

Richard Green, Nathan Piazza, Lynn McRae
Tom Cramer, Tim Sigmon, Ross Wayland

Open Repositories 2009, Atlanta, GA
21st May 2009

Stanford University

“Lightweight workflow” is both an oxymoron
and a continual aspiration of many
stakeholders in the repository community

OR09 - Atlanta 2009 May 18-21 2

Introduction

• Hull, Virginia and Stanford, with Fedora
Commons, are collaborating on the Hydra Project

– Reusable application framework over Fedora to allow
rapid deployment of repository-powered applicationsrapid deployment of repository-powered applications
for wide variety of content types

• Workflow is integral and, to allow easy re-use and
extensibility, methods for supporting workflow
must be easily adaptable

• Three parallel workflow approaches

OR09 - Atlanta 2009 May 18-21 3

Hull, Hydra and BPEL

OR09 - Atlanta 2009 May 18-21 4

A short history

• Hull has been developing workflows using
BPEL for the last four years

– (Business Process Execution Language – an open
standard)standard)

• Used in conjunction with SOAP Web Services
during the RepoMMan and REMAP projects

– JISC-funded projects 2005-2007 & 2007-2009

OR09 - Atlanta 2009 May 18-21 5

Why BPEL?

• In 2005 Hull (and JISC) had an interest in using
BPEL within a Service Oriented Architecture

• BPEL (then) available in an Open Source• BPEL (then) available in an Open Source
engine from (then) Active Endpoints

• Good fit with Fedora’s (then) SOAP Web
Services interface (REST now available too)

OR09 - Atlanta 2009 May 18-21 6

Pros and Cons #1
<bpel:forEach counterName="counter" parallel="no">

<bpel:startCounterValue>1</bpel:startCounterValue>

<bpel:finalCounterValue>count($getCollectionItemsResponse/itemList/itemPID)
</bpel:finalCounterValue>

<bpel:scope>
<bpel:flow>

<bpel:links>
<bpel:link name="L1"/>
<bpel:link name="L3"/>
<bpel:link name="L2"/>

</bpel:links>
<bpel:assign name="AssignGetObjectProfile">

<bpel:sources>
<bpel:source linkName="L1"/>

</bpel:sources>
<bpel:copy>

<bpel:from variable="getCollectionItemsResponse">
<bpel:query>itemList[$counter]/itemPID</bpel:query>

</bpel:from>
<bpel:to variable="getObjectProfile">

<bpel:query>pid</bpel:query>
</bpel:to>

</bpel:copy>
<bpel:copy>

<bpel:from>''</bpel:from>

<bpel:query>
types:itemsRef[$counter]/types:isCollection

</bpel:query>
</bpel:to>

</bpel:copy>
<bpel:copy>

<bpel:from variable="getObjectProfileResponse">
<bpel:query>objectProfile/objLabel</bpel:query>

</bpel:from>
<bpel:to variable="collectionItemsResponse">

<bpel:query>types:itemsRef[$counter]/types:label</bpel:query>
</bpel:to>

</bpel:copy>
<bpel:copy>

<bpel:from variable="getObjectProfileResponse">
<bpel:query>objectProfile/objLastModDate</bpel:query>

</bpel:from>
<bpel:to variable="collectionItemsResponse“>

<bpel:query>
types:itemsRef[$counter]/types:lastModified

</bpel:query>
</bpel:to>

</bpel:copy>
</bpel:assign>
<bpel:invoke inputVariable="getObjectProfile"

name="getObjectProfile" operation="getObjectProfile"

<bpel:assign name="AssignGetDatastream">
<bpel:sources>

<bpel:source linkName="L4"/>
</bpel:sources>
<bpel:copy>

<bpel:from variable="getCollectionItemsResponse">
<bpel:query>itemList[$counter]/itemPID</bpel:query>

</bpel:from>
<bpel:to variable="getDatastream">

<bpel:query>pid</bpel:query>
</bpel:to>

</bpel:copy>
<bpel:copy>

<bpel:from>
<bpel:literal>file</bpel:literal>

</bpel:from>
<bpel:to variable="getDatastream">

<bpel:query>dsID</bpel:query>
</bpel:to>

</bpel:copy>
<bpel:copy>

<bpel:from>''</bpel:from>
<bpel:to variable="getDatastream">

<bpel:query>asOfDateTime</bpel:query>
</bpel:to>

</bpel:copy><bpel:from>''</bpel:from>
<bpel:to variable="getObjectProfile">

<bpel:query>asOfDateTime</bpel:query>
</bpel:to>

</bpel:copy>
</bpel:assign>
<bpel:assign name="AssignCollectionItems">

<bpel:targets>
<bpel:target linkName="L2"/>

</bpel:targets>
<bpel:sources>

<bpel:source linkName="L3"/>
</bpel:sources>
<bpel:copy>
<bpel:from variable="getCollectionItemsResponse">

<bpel:query>itemList[$counter]/itemPID</bpel:query>
</bpel:from>
<bpel:to variable="collectionItemsResponse">

<bpel:query>
types:itemsRef[$counter]/types:objectPID

</bpel:query>
</bpel:to>

</bpel:copy>
<bpel:copy>

<bpel:from variable="getCollectionItemsResponse">
<bpel:query>itemList[$counter]/isCollection</bpel:query>

</bpel:from>
<bpel:to variable="collectionItemsResponse">

name="getObjectProfile" operation="getObjectProfile"
outputVariable="getObjectProfileResponse" partnerLink="FedoraAccessLT">

<bpel:targets>
<bpel:target linkName="L1"/>

</bpel:targets>
<bpel:sources>

<bpel:source linkName="L2"/>
</bpel:sources>

</bpel:invoke>
<bpel:if>

<bpel:targets>
<bpel:target linkName="L3"/>

</bpel:targets>
<bpel:condition>

contains(string($getCollectionItemsResponse/itemList[$counter]/isCollection),
'true')

</bpel:condition>
<bpel:assign name="AssignNullMimetype">

<bpel:copy>
<bpel:from>''</bpel:from>
<bpel:to variable="collectionItemsResponse">

<bpel:query>
types:itemsRef[$counter]/types:mimeType

</bpel:query>
</bpel:to>

</bpel:copy>
</bpel:assign>
<bpel:else>

<bpel:flow>
<bpel:links>

<bpel:link name="L4"/>
<bpel:link name="L5"/>

</bpel:links>

</bpel:copy>
</bpel:assign>
<bpel:invoke inputVariable="getDatastream"

name="getDatastream" operation="getDatastream"
outputVariable="getDatastreamResponse"
partnerLink="FedoraManagementLT">

<bpel:targets>
<bpel:target linkName="L4"/>

</bpel:targets>
<bpel:sources>

<bpel:source linkName="L5"/>
</bpel:sources>

</bpel:invoke>
<bpel:assign name="AssignMimetype">

<bpel:targets>
<bpel:target linkName="L5"/>

</bpel:targets>
<bpel:copy>

<bpel:from variable="getDatastreamResponse">
<bpel:query>datastream/MIMEType</bpel:query>

</bpel:from>
<bpel:to variable="collectionItemsResponse">

<bpel:query>
types:itemsRef[$counter]/types:mimeType

</bpel:query>
</bpel:to>

</bpel:copy>
</bpel:assign>

</bpel:flow>
</bpel:else>

</bpel:if>
</bpel:flow>

</bpel:scope>
</bpel:forEach>

OR09 - Atlanta 2009 May 18-21 7

Pros and Cons #2

• Cons: verbose, fiddly, syntactically
demanding, soul destroying, ….

• Pros (given a good graphical design
interface): powerful, flexible, relativelyinterface): powerful, flexible, relatively
quick to “write”, test and edit…

• Each node in the tree is an ‘activity’ (for
each, assign, get, if, etc) for which you
provide the parameters
• Note: the ‘for each’ loop depicted here

results in the code on the previous slide

OR09 - Atlanta 2009 May 18-21 8

The REMAP tool

• The REMAP tool (son of RepoMMan) uses
BPEL-orchestrated Web Services to allow a
user to interact with the institutional
repositoryrepository

• Each component Web Service can be used and
re-used in multiple contexts given appropriate
granularity

OR09 - Atlanta 2009 May 18-21 9

REMAP #2
• Consider a

user copying
a file from
their
computer to
their privatetheir private
repository
space

• They browse their computer at the left and upload the file to
their repository space, represented at the right. Lots of stages
(Web Services) involved ‘under the lid’

OR09 - Atlanta 2009 May 18-21 10

REMAP #3

OR09 - Atlanta 2009 May 18-21 11

REMAP #4

• The user can (optionally) publish a file to the
institutional repository. The tool provides a
context sensitive wizard.

• The process is moderated through an
accession queue.

• Take the example of a thesis (ETD)

OR09 - Atlanta 2009 May 18-21 12

Publishing “my” thesis

OR09 - Atlanta 2009 May 18-21 13

ETD in the repository
• Repository object

has been given
RMDP tags to help
management and
potential
preservationpreservation

• Metadata
conversion has taken
place – all BPEL and
Web Services

OR09 - Atlanta 2009 May 18-21 14

Workflow

• This has described one workflow. Hydra will
allow non-expert users to
– Reconfigure existing workflows

– Build other workflows (Templates?) using a ‘Lego set’ of– Build other workflows (Templates?) using a ‘Lego set’ of
Web Services provided

– Choice of orchestration method

• Hull pursuing BPEL for now although the
Active Endpoints Open Source BPEL engine is
no longer being developed by Active VOS

OR09 - Atlanta 2009 May 18-21 15

Virginia and Hydra:
Community-Driven Workflow and StayingCommunity-Driven Workflow and Staying

RESTful

OR09 - Atlanta 2009 May 18-21 16

• Virginia has less developed workflow
implementations than Hull or Stanford

• Still in the process of learning exactly what our
workflow needs are/will be

Background

workflow needs are/will be

• A culture of RESTfulness (Blacklight)

• The “Million Manuscript March” as key
usecase

• A decentralized community

OR09 - Atlanta 2009 May 18-21 17

• Hierarchical (business) management structure
with top-down power to mandate IT policy

• Widespread and consistent programmer
skillsets

SOA Workflow Assumptions

skillsets

• Many distributed machines/systems

• Use cases with complex business procedures
requiring formal signoff/many human hands

OR09 - Atlanta 2009 May 18-21 18

• Distributed management structure: cooperation
between academic and administrative units on IT
initiatives is a fresh proposition every day

• Variable programmer skillsets from unit to unit and
department to department

By Contrast: UVa's Situation

department to department

• A handful of systems everyone wants to talk to

• Use cases where a handful of people are doing the
same informal tasks every day, focused mostly on
their own needs

OR09 - Atlanta 2009 May 18-21 19

• Many small projects in one library

• Many different text processing procedures and metadata
schemes

Usecase-Driven Workflow:
Manuscript Digitization

• A genuine “community” of• A genuine “community” of
users, focused primarily on
internal project needs

• Few manuscript-processing
procedures exposed as web
services

OR09 - Atlanta 2009 May 18-21 20

REST: A Better Fit for UVa?

• What the web was designed to do: supporting
communities with varying skillsets, timetables, and
priorities in need of ad hoc publishing with a few low-
level standardslevel standards

• REST tries to preserve the webbiness of the web

• REST emphasizes system independence

OR09 - Atlanta 2009 May 18-21 21

The relationship between REST and SOAP/WSDL is similar to that between
XML and SGML. XML was prescriptive: "you must use Unicode." SGML was
descriptive: "you may use any character set but you must declare it." XML:
"you must use URIs for identifiers." SGML: "You may use any sort of identifier
(filename, database key, etc.)."

A Little REST Partisanship

SOAP advocates say: "We want to work with you. Tell us what you need added
to SOAP/WSDL and we will add it." But actually what REST advocates want is
not more but less.

- Paul Prescod, REST Advocate, author of “The XML Handbook”
(http://www.prescod.net/rest/rest_vs_soap_overview/)

OR09 - Atlanta 2009 May 18-21 22

REST as Workflow Minimalism and
Gradualism

• REST thus implies 'less is more' where workflow is concerned

• Having a workflow engine won't make your community agree to
use a lot of application-level standards; you can only encourage
them to grow towards that by dipping a toe into the services waters

• Specific usecases should drive complexity of implementation

• Start with GET POST PUT and DELETE, and see how it squares with
the 80/20 rule

• See service exposure evangelism as a key part of what we do; the
level of service exposure may justify more investment in SOA
approaches down the line

• Entice project stakeholders to use centralized services where needs
are common and development resources are available

OR09 - Atlanta 2009 May 18-21 23

REST Drawbacks

• Where business processes are both genuinely complex and distributed
enough to justify a full-blown “web programming language”, SOA is a
much better fit.

• There are almost no off-the-shelf REST workflow solutions. If what's
needed is a turnkey application, SOA is a much better fit.needed is a turnkey application, SOA is a much better fit.

• REST by its very nature implies gradualism and community. If your goal
is transform your centrally-managed institution into a web services
juggernaut overnight, using a crack team of muscular programmers to
expose everyone's data at once, SOA is the better fit.

• SOA is basically web-based remote invocation. If EJB and CORBA have
been essential to your institution, REST may feel like an alien
paradigm.

OR09 - Atlanta 2009 May 18-21 24

REST Workflow Beyond CRUD

• Create (Post), Read (Get), Update (Put), Delete (Delete) is the core
paradigm of the REST philosophy, but that's not the end of the story

• Cookies have been used to add statefulness to the web for years

• WS-CDL (Web Services Choreography Description Language) exists to do
more complex kinds of interoperability, but so far the need for that
complexity in the REST community appears yet to emergecomplexity in the REST community appears yet to emerge

• Distributed transactions seem like one of the commonest use cases
requiring some of the messaging and execution control capabilities of a
language like BPEL. But there is no reason you could not implement your
own RESTful messaging mini-protocol to suit these needs.

By and large, the ease and flexibility of CRUD for workflow is vastly
underestimated. For an example, see: “How to GET a Cup of Coffee”

(http://www.infoq.com/articles/webber-rest-workflow)

OR09 - Atlanta 2009 May 18-21 25

Hydra and
Stanford Workflow

Stanford University Libraries

OR09 - Atlanta 2009 May 18-21 26

• A Digital Object Registry (DOR) provides full object
management from the moment an item is acquired
• Built with Fedora

• Support object deposit, conversion, metadata
enrichment, derivatives, packaging, tracking, etc.

• Prepares resources for Access and Delivery and

Stanford Accessioning

Stanford University Libraries

• Prepares resources for Access and Delivery and
Preservation environments

InfrastructureInfrastructure

Digital Stacks
Access and Delivery
Digital Stacks
Access and Delivery

Stanford Digital Repository

Preservation

Stanford Digital Repository

Preservation

Digital Object Registry
Management
Digital Object Registry
Management

OR09 - Atlanta 2009 May 18-21 27

accessioning

• A classic need for workflow?

• The work required to "ready" a resource is
described as a set of conditions that must
be met -- "get descriptive metadata",
"validate files", "generate METS", etc.

Stanford University Libraries

Workflow WorkDo

"validate files", "generate METS", etc.

• Wanted a simple, lightweight approach to
getting objects prepped and assembled

• Focus should be on what needs to be done,
not the process that gets you there

OR09 - Atlanta 2009 May 18-21 28

A workflow datastream in each object describes
processing requirements and status

<workflow id=“googleScannedBookWF" status="active” …>
<process name="register-object" status="completed” attempts="1" />
<process name="desc-metadata" status="completed” attempts="1" />

How WorkDo works

Stanford University Libraries

<process name="desc-metadata" status="completed” attempts="1" />

<process name="google-convert" status="completed” attempts="1" />
<process name="google-download" status="exception”

message="Item for barcode 0339518 not found" attempts="3" />

<process name="create-pages" status="waiting” attempts="0" />
<process name="ingest" status="waiting” attempts="0" />
<process name="shelve" status="waiting” attempts="0" />

<process name="cleanup" status="waiting” attempts="0" />
</workflow>

OR09 - Atlanta 2009 May 18-21 29

• Each condition = a task to be performed

• Simple scripts for automated tasks

• Web UI interactions for human tasks

• Tasks can often be done in parallel

• Simple pre-requisite conditions support

How WorkDo works

Stanford University Libraries

• Simple pre-requisite conditions support
dependencies between tasks, e.g.,
• “you can’t archive the object before the page

files are processed”

• ”you can’t submit the Dissertation before the
files are uploaded”

OR09 - Atlanta 2009 May 18-21 30

• A robot is a simple script assign to a task

• Autonomous, like robots on an assembly line

• A typical robot …

• performs a task -- simplest robots
mainly coordinate infrastructure

Scripted tasks – Robots!

Stanford University Libraries

mainly coordinate infrastructure
service calls

• creates or updates relevant
DOR/Fedora objects and
datastreams

• updates workflow process status
on completion of task

OR09 - Atlanta 2009 May 18-21 31

Query workflow – a query for items with a waiting
status yields “queues” of work to be done

Initiate workflow – Adds workflow datastream to
specified object

Workflow Services

Stanford University Libraries

GET https://dor.stanford.edu/workflow_queue?[query]

specified object

Update workflow – Updates status for a workflow
step

OR09 - Atlanta 2009 May 18-21 32

PUT https://dor.stanford.edu/objects/{id}/workflows/{workflow}

PUT https://dor.stanford.edu/objects/{druid}/workflows/{workflow}/{process}

[show admin
page here]

OR09 - Atlanta 2009 May 18-21 33

• Leverages data placed in the object itself:

• The object itself can be asked about the
status of workflow processes

• Workflow state is indexed (SOLR)
alongside other processing information

Working within the object

Stanford University Libraries

alongside other processing information

• Provide ongoing management
information about the flow of objects
through the system

• They can be exposed as facets in an
administrative discovery environment

OR09 - Atlanta 2009 May 18-21 34

• It does not have all the capabilities of a fully
featured workflow system, e.g.,
• It is associated with specific set of objects so

could not coordinate work across environments

• Fits a certain sized "lifecycle" unit of work; not
suited for controlling many small processes

Cons

Stanford University Libraries

suited for controlling many small processes

• It does not support very complex or highly
dynamic workflows

• Need to evolve this solution as needed

OR09 - Atlanta 2009 May 18-21 35

• The integration of the workflow data with
the object has been effective in satisfying
the informational and processing needs of
our digital resource management

• Lightweight? Does not require external

Pros

Stanford University Libraries

• Lightweight? Does not require external
rule or state engines, messaging, or
separate process orchestration software

• Was quick and easy to implement

• Can evolve this solution only as needed

• We got robots!

OR09 - Atlanta 2009 May 18-21 36

Who/What

ETD Submission

Upload

Workflow

Stanford University Libraries

Describe

Rights

OR09 - Atlanta 2009 May 18-21 37

ETD Workflow

Stanford University Libraries

OR09 - Atlanta 2009 May 18-21 38

<workflow id=“hydraEtd" status="active” …>

<process name="register-object" status="completed” attempts="1" />

<process name=”metadata" status="completed” attempts="1" />
<process name=”upload" status="completed” attempts="1" />

<process name=”attachments" status="completed” attempts="1" />

<process name=”rights" status="waiting” attempts="0" />

Workflow Datastream for ETDs

Stanford University Libraries

<process name=”rights" status="waiting” attempts="0" />

<process name=”submit" status="waiting” attempts="0" />

<process name=”final-reading" status="waiting” attempts="0" />

<process name=”registrar-approval" status="waiting” attempts="0" />

<process name=”initiate-accession" status="waiting” attempts="0" />

</workflow>

OR09 - Atlanta 2009 May 18-21 39

Conclusion

• Hydra “out of the box” solutions must balance
internal built-in solutions with dependence on
institutional infrastructure

• 3 approaches will help distinguish between• 3 approaches will help distinguish between
what Hydra apps need to do vs how they do it

• We are focusing on identifying key events
within apps and coordinating service call

• Long range goals for easy assembly of dynamic
workflows will take time

OR09 - Atlanta 2009 May 18-21 40

Contacts and links

r.green@hull.ac.uk

nathan.piazza@gmail.com

lmcrae@stanford.edulmcrae@stanford.edu

tstaples@fedora-commons.org

r.green@hull.ac.uk
https://fedora-commons.org/confluence/display/hydra/

Stanford University

OR09 - Atlanta 2009 May 18-21 41

