
APPLIED
LINKED DATA
Steven Anderson, Boston Public Library
Slides: https://goo.gl/BP2inf
Workshop Helpers: Corey Harper and David Lacy
Vagrant: https://github.com/scande3/hydra-vagrant

GETTING SETUP

Further Setup

Setup Vagrant:
> Download Vagrant from:

https://www.vagrantup.com/downloads.html

> sudo apt-get install VirtualBox

> git clone

https://github.com/scande3/hydra-vagrant.git

> cd hydra-vagrant

> vagrant up

https://www.vagrantup.com/downloads.html

Ensure VagrantFile is 4GB RAM:
> vim VagrantFile

> v.memory = 2048 -> v.memory = 4096

> esc, :w, :q

> vagrant halt

> vagrant up

Get an older LOC authorities file:
(Newest June version seems to lack narrower skos

concept relationships...?)

> cd <vagrant_home>/downloads

> wget

static.digitalcommonwealth.org/samples/authoritiessubje

cts.nt.skos.zip

> cd ..

Setting up Blazegraph:
> vagrant ssh

> cd ldata

> vim Gemfile

> gem 'ldfwrapper', github:

'boston-library/ldf-wrapper', branch: "master"

> esc, :w, :q

> bundle install

> rake ldfjetty:install

> rake ldfjetty:start

Server should be accessible at: http://localhost:8988/

(Go to Blazegraph -> Explore -> search for

“http://id.loc.gov/authorities/subjects/sh2002006395”)

http://localhost:8988/

Blazegraph Without Jetty:
Blazegraph download site: https://www.blazegraph.com/

For a tomcat 7 deploy:

● Rename to blazegraph.war

● Deploy to /var/lib/tomcat7/webapps (or equivalent

webapps directory)

● Set appropriate permissions so tomcat can access the

war.

Populate Blazegraph with LCSH:
> vagrant ssh

> cd /vagrant/downloads

> unzip authoritiessubjects.nt.skos.zip

> curl -H 'Content-Type: text/turtle' --upload-file

/vagrant/downloads/subjects-skos-20140306.nt -X POST

"http://localhost:8988/blazegraph/sparql?context-uri=au

thoritiessubjects.nt.skos.zip"

(Try Blazegraph -> Explore -> search for

“http://id.loc.gov/authorities/subjects/sh2002006395”

once again to see it is now populated with LOC)

http://id.loc.gov/authorities/subjects/sh2002006395

FCREPO_WRAPPER:
> vagrant ssh

> cd ldata

> fcrepo_wrapper -p 8984 -i /vagrant/downloads

Service should be accessible at: http://localhost:8984

http://localhost:8984

SOLR_WRAPPER:
> vagrant ssh

> cd ldata

> solr_wrapper -p 8983

Service should be accessible at: http://localhost:8983

http://localhost:8983

Generate a Test Curation
Concerns Model:

> vagrant ssh

> cd ldata

> rails generate curation_concerns:work myobj

> rails s -p 3000 -b 0.0.0.0

Service should be accessible at: http://localhost:3000

. Create an account using the “Log In” link in the

upper right. See the fields of a new object in your

browser… they are essentially built on literals.

http://localhost:3000

Using a URI

Making subject use a uri

DCTerms Subject:

● http://dublincore.org/documents/dcmi-terms/#terms-su

bject -> “This term is intended to be used with

non-literal values as defined in the DCMI Abstract

Model

(http://dublincore.org/documents/abstract-model/).

As of December 2007, the DCMI Usage Board is seeking

a way to express this intention with a formal range

declaration.”

● In addition, seems there is a slight preference to

not mix literal and uri values in the same

predicate.

http://dublincore.org/documents/dcmi-terms/#terms-subject
http://dublincore.org/documents/dcmi-terms/#terms-subject
http://dublincore.org/documents/abstract-model/

Turn subject into uris:
> vagrant ssh

> cd ldata

> vim Gemfile

gem 'rdf', '1.99.0'

gem 'rdf-blazegraph'

> esc, :w, :q

> bundle update

Turn subject into uris:
> vim app/models/myobj.rb

class Myobj < ActiveFedora::Base

 …
 def self.indexer

 MyobjIndexer

 end

end

Turn subject into uris:
> mkdir app/indexers

> vim app/indexers/myobj_indexer.rb

class MyobjIndexer < CurationConcerns::WorkIndexer

 def self.repo
 @repo ||=

::RDF::Blazegraph::Repository.new('http://localhost:8988/blazegraph/sparql'

)

 end

 def generate_solr_document

 super.tap do |solr_doc|

 #your solr content goes here

 end

 end

end

Turn subject into uris:
See gist at the following for rest of solr code:

https://gist.github.com/scande3/283867b05b9ce070dc4c685

763115430

(Quick TLDR: Parse the URI for the best “English”

version of the subject as the primary label. Put the

rest in an alternative label field so we can still

search on those terms. In the end, we have five fields

in solr: the original Subject field with the uri, two

“preferred label” subject fields of ssim and tesim, and

two “alternative labels” subject fields of ssim and

tesim).

https://gist.github.com/scande3/283867b05b9ce070dc4c685763115430
https://gist.github.com/scande3/283867b05b9ce070dc4c685763115430

Turn subject into uris:
Go and get a uri or two from:

http://id.loc.gov/search/?q=&q=cs%3Ahttp%3A%2F%2Fid.loc

.gov%2Fauthorities%2Fsubjects (Example:

http://id.loc.gov/authorities/subjects/sh85063283)

Create a sample object or two in your application using

those uris in the “Subject” field!

http://id.loc.gov/search/?q=&q=cs%3Ahttp%3A%2F%2Fid.loc.gov%2Fauthorities%2Fsubjects
http://id.loc.gov/search/?q=&q=cs%3Ahttp%3A%2F%2Fid.loc.gov%2Fauthorities%2Fsubjects

Turn subject into uris:
Our object creates. . . but we still have these ugly

uri’s?!?! I can’t read those at a glance!

> vim app/models/solr_document.rb

Add before the last “end”:

 def subject

 fetch('subject_primary_label_ssim', [])

 end

> esc, :w, :q

Refresh the screen for magic!

Turn subject into uris:
Huh? What’s that? Facets, index view, and searching

now? Gee, aren’t you demanding!

> vim app/controllers/catalog_controller.rb

Make changes from gist:

https://gist.github.com/scande3/9250e282dd48e4b5d227ff2

c6cc366df

https://gist.github.com/scande3/9250e282dd48e4b5d227ff2c6cc366df
https://gist.github.com/scande3/9250e282dd48e4b5d227ff2c6cc366df

Turn subject into uris:
Try it out some!

Take a moment to see that it works correctly. Note:

1. We haven’t added much validation. The user could

enter in bad uri’s or even string literals.

2. We could further expand upon this. For example, when

searching for “Sports”, you could return “Baseball”

tagged objects.

a. The theory is the same as the alt labels for this

case. You just assign it a really low search

weight so it only comes up once all other

“Sports” objects have been exhausted.

Linked Data Fragments

Or how can this work without
Blazegraph? How can I share code with
my buddy using Marmotta?

Get the application:
> vagrant ssh

> git clone

https://github.com/ActiveTriples/linked-data-fragments.git

> cd linked_data_fragments

> cp config/ldf.yml.sample_blazegraph config/ldf.yml

> vim ldf.yml

Edit all “:3000” references to “:3001”.

> esc, :w:, :q

> bundle install

> rake

> rails s -p 3001 -b 0.0.0.0

https://github.com/ActiveTriples/linked-data-fragments.git

Test the application:
Root response test:

http://localhost:3001?format=jsonld

Sample response in different formats:

● http://localhost:3001/http://id.loc.gov/authorities/

subjects/sh2010112128?format=jsonld

● http://localhost:3001/http://id.loc.gov/authorities/

subjects/sh2010112128.nt

● http://localhost:3001/http://id.loc.gov/authorities/

subjects/sh2010112128.ttl

http://localhost:3001?format=jsonld
http://localhost:3001/http://id.loc.gov/authorities/subjects/sh2010112128?format=jsonld
http://localhost:3001/http://id.loc.gov/authorities/subjects/sh2010112128?format=jsonld
http://localhost:3001/http://id.loc.gov/authorities/subjects/sh2010112128.nt
http://localhost:3001/http://id.loc.gov/authorities/subjects/sh2010112128.nt
http://localhost:3001/http://id.loc.gov/authorities/subjects/sh2010112128.ttl
http://localhost:3001/http://id.loc.gov/authorities/subjects/sh2010112128.ttl

Modify existing code for new
backend:

> vagrant ssh

> cd ldata

> vim app/indexers/myobj_indexer.rb

Remove “self.repo” method. Add the following line above

the first usage of that (after full_alt_term_list =

[]):
repo = RDF::Graph.load("http://localhost:3001/#{subj}.ttl", format:

:ttl)

Replace “MyobjIndexer.repo” with just “repo”.

Gist of these changes:

https://gist.github.com/scande3/2ade4f5cf2d9551efc8b1b5

c078f64b3

https://gist.github.com/scande3/2ade4f5cf2d9551efc8b1b5c078f64b3
https://gist.github.com/scande3/2ade4f5cf2d9551efc8b1b5c078f64b3

Try the application again!:
Restart your application (ctrl+c the window with “rails

c -p 3000 -b 0.0.0.0” and run that command again).

Verify that it all still works. Congrats! You know have

backend agnostic code for your Hydra Head.

Metadata Enrichment
Interface

An example of potentially sharing code

Add Mei to the project:
> vagrant ssh

> cd ldata

> vim Gemfile

Gem ‘mei’, github: ‘boston-library/mei’

> esc, :w, :q

> bundle install

> rails generate mei:install

Setup your form:
> mkdir app/views/curation_concerns/base

> vim

app/views/curation_concerns/base/_form_additional_infor

mation.html.erb

Add content from:

https://gist.github.com/scande3/7c287794b7e5b6e0c36cb24

1601dd855

> esc, :w, :q

https://gist.github.com/scande3/7c287794b7e5b6e0c36cb241601dd855
https://gist.github.com/scande3/7c287794b7e5b6e0c36cb241601dd855

Setup your controller:
> vim

app/controllers/curation_concerns/myobjs_controller.rb

Add content from:

https://gist.github.com/scande3/5f616b2d2fc36e3cd041bac

d12c145df

> esc, :w, :q

https://gist.github.com/scande3/5f616b2d2fc36e3cd041bacd12c145df
https://gist.github.com/scande3/5f616b2d2fc36e3cd041bacd12c145df

Try it out!:
Your form should now have a “lookup” option and display

the label along with the uri!

This framework is extensible to more than just

subjects. Is there interest in taking this beyond an

“alpha release” gem?

Oregon Controlled
Vocabulary Manager

Hosting a vocabulary

Controlled Vocabulary Manager:
> vagrant ssh

> cd ldata

> git clone

https://github.com/OregonDigital/ControlledVocabularyMa

nager.git

> cd ControlledVocabularyManager

> sudo apt-get install build-essential libmysqlclient-dev

> sudo apt-get install cmake pkg-config

> bundle install

> vim config/settings/development.yml

Set blazegraph url to:

 url: "http://localhost:8988/blazegraph/sparql"

https://github.com/OregonDigital/ControlledVocabularyManager.git
https://github.com/OregonDigital/ControlledVocabularyManager.git

Controlled Vocabulary Manager:
> rake db:create

> rake db:migrate

> rails s -p 3002 -b 0.0.0.0

Create an account at: http://localhost:3002/

> ctrl+c (end rails)

> rails c

> user = User.all.last

> user.role = “admin”

> user.save

> ctrl+d (exit console)

> rails s -p 3002 -b 0.0.0.0

http://localhost:3002/

Opaquenamespace:
You can now try out your own linked data service!

Access it at: http://localhost:3002/

http://localhost:3002/

What next?

Continuing this type of work

Applied Linked Data Working
Group

Is there a further interest in this type of work? If

so, when do people want to collaborate on it?

Unresolved TODOs:

● Linked Data Fragments as a mountable engine.

● Sidecar indexer to poll and update linked data in

Solr so the labels don’t go stale.

● Next generation harvesting (ie. potentially

ResourceSync?).

● Advancement of better Metadata interfaces.

For past meeting notes and information, see:

https://wiki.duraspace.org/display/hydra/Applied+Linked

+Data+Working+Group

https://wiki.duraspace.org/display/hydra/Applied+Linked+Data+Working+Group
https://wiki.duraspace.org/display/hydra/Applied+Linked+Data+Working+Group

THANKS!
Any questions?

Steven Anderson
Twitter: @scande3
sanderson@bpl.org

Slides: https://goo.gl/BP2inf

mailto:sanderson@bpl.org

