
Synchronizing Samvera
Repositories

Samvera Connect 2018

James Griffin
Digital Infrastructure Developer

Princeton University Library

Synchronizing Samvera Repositories
● Before discussing synchronization…
● What is a repository? Why does one build one?

Digital Repositories: What Do They Do?
● Within an organization what do they provide?

○ Uploading and sharing things (Publishing)

○ Describing things (Curation)

○ Organizing things into collections (Asset management)

○ Finding things (Discovery)

○ Saving things (Preservation)

● Identifying these requirements, one develops a platform

Building a Digital Repository
● How could one approach development?

○ Fancy Simple but expressive language?

○ Reliable and robust framework?

○ Community-driven?

● One can use Ruby on Rails and Samvera
● Let’s build a repository!

Building a Digital Repository
(7 months pass...)

● Samvera repository is released!
● Curators can manage their collections
● Subject specialists can catalog items
● Reference librarians can use our repository as a new resource
● Generic users can browse each item and search for content
● Successful deployment 🙌

Building a Digital Repository
(2 months follow...)

● Subject specialists need new controlled vocabularies
● Curators need a custom user experience just for their collection
● Reference librarians need enhancements to the discovery interface
● Our response?
● Extend the App!

Scaling a Digital Repository
(1 year follows...)

● Curators need another custom user experience for a new unique collection
● Reference librarians find the repository slow
● Subject specialists have new content to migrate into the repository
● We need to update the repository to the latest Samvera Gems
● ...but we can still only extend a single App!
● Add a new server!
● Hire a new developer!

● We can use DevOps ⚡!

Motivation: Monolithic Repositories
● These problems are not new to web development
● Arise from an approach relying upon monolithic system architecture
● There are alternative architectural patterns

○ Service-Oriented Architecture

○ Distributed Object Architecture

○ Message-Oriented Middleware

○ Microservices

● These can be nebulous (and used as buzz-phrases)
● These often overlap

Distributed Architecture
● How can system architecture be distributed?
● This is a large topic
● Computing can be distributed on many layers

○ Distributed object passing (CORBA, DCOM, dRuby*)

○ Web service standards (WSDL, SOAP, WADL)

○ Messaging protocols (XMPP, STOMP, AMPQ)

○ RESTful services

● We’re going to focus upon distribution using messaging protocols

*Example of dRuby: https://github.com/youchan/drb-websocket

https://github.com/youchan/drb-websocket

Messages
● What is a message?

○ Data describing an event in our ecosystem

○ Payload also contains metadata about the event

○ e. g. alice updated FileSet cca3c02 at 10/11/18 09:31:00UTC on repo1.institution.edu

● Services publish messages
● Services listen for messages
● Messages are stored in queues
● Services only access messages using these shared queues

Message Protocols
● Standard protocols determine how messages are sent

○ Over the TCP? Over the HTTP?

● Protocols also determine the message structure
● Streaming Text Oriented Messaging Protocol (STOMP)

○ Text-based messages

○ Key/value pairs contain the data

● Advanced Message Queuing Protocol (AMQP)
○ Messages are bitstreams (binary)

○ Defines how queues can be accessed by multiple clients

Message Brokers
● Sharing queues between services is difficult
● What manages the queue?

○ Message Broker

● Publish and Subscribe (Pub/Sub) pattern
● Services publish messages to queue(s) through the broker

○ Services can publish to multiple queues

○ This is a fanout

● Services then access the queues by subscribing through the broker

Message Brokers
Open Source Message Brokers

● Apache Kafka
● Apache Camel
● ActiveMQ
● RabbitMQ
● HornetQ
● Redis
● Celery
● (There are more)

Test Case: RabbitMQ
● We can only discuss one solution today :(
● Princeton University Library uses RabbitMQ

○ Implements the AMQP

● Other repositories are using alternatives
○ Apache Camel, Fedora 4, and Islandora (https://github.com/Islandora-CLAW/Alpaca)

○ Apache Kafka and Trellis (https://github.com/trellis-ldp-archive/trellis-kafka)

● Rails provides ActiveJob as an abstraction layer
○ Somewhat comparable
○ Support for Redis, MongoDB, PostgreSQL, ...

● Disclaimer:
○ This talk is not an endorsement for RabbitMQ

https://github.com/Islandora-CLAW/Alpaca
https://github.com/trellis-ldp-archive/trellis-kafka

Test Case: RabbitMQ and Ruby
● ruby-amqp/bunny

○ Gem for RabbitMQ in Ruby

● Configuration is simple
○ Client builds a connection

○ Client connects to a channel

○ Client interfaces with the queue

require "bunny"

conn = Bunny.new

conn.start

ch = conn.create_channel

q = ch.queue("test1")

q.publish("Hello, everybody!")

delivery_info, metadata, payload = q.pop

puts "This is the message: #{payload}"

conn.stop

https://rubygems.org/gems/bunny

Test Case: RabbitMQ and Rails
Publishing to RabbitMQ

● ruby-amqp/bunny
○ Construct a Bunny client

○ Define an adapter for the client

○ Make a service object!

frozen_string_literal: true

class MessagingClient

…

 def publish(status, model)

 message = generate_message(status, model)

 exchange.publish(message, persistent: true)

 rescue

 Rails.logger.warn "Unable to publish message to
#{amqp_url}"

 end

…

https://rubygems.org/gems/bunny

Test Case: RabbitMQ and Rails
Publishing to RabbitMQ

● ruby-amqp/bunny
○ Construct a Bunny client

○ Define an adapter for the client

○ Make a service object!

● Use transaction callbacks
○ after_commit

class User < ApplicationRecord

 include Hyrax::User

 after_create_commit :publish_create_message

 after_update_commit :publish_update_message

 after_delete_commit :publish_delete_message

…

https://rubygems.org/gems/bunny
https://guides.rubyonrails.org/active_record_callbacks.html#transaction-callbacks

Test Case: RabbitMQ and Rails
Publishing to RabbitMQ

● ruby-amqp/bunny
○ Construct a Bunny client

○ Define an adapter for the client

○ Make a service object!

● Use transaction callbacks
○ after_commit

● Publish messages to the queue

class User < ApplicationRecord

…

 def publish_create_message

 messaging_client.publish_message(

:create,

self

)

 end

…

 def messaging_client

 MessagingClient.new

…

https://rubygems.org/gems/bunny
https://guides.rubyonrails.org/active_record_callbacks.html#transaction-callbacks

Test Case: RabbitMQ and Rails
Subscribing to RabbitMQ

● Problem:
○ Rails can’t serve requests and listen to

the Rabbit queue

● Use asynchronous workers
● jondot/sneakers

○ Gem with support for RabbitMQ

○ Uses Redis for background processing

Sneakers.configure(

 amqp: "amqp://localhost:5672",

 exchange: "my_repository",

 exchange_type: :fanout,

 handler: Sneakers::Handlers::Maxretry

)

Sneakers.logger.level = Logger::INFO

https://rubygems.org/gems/sneakers

Test Case: RabbitMQ and Rails
Subscribing using Sneakers

● Implement a Worker
● Sneaker::Worker Module
● Override the #work method

class AmqpMessageWorker

 include Sneakers::Worker

 def work(payload)

 result = process(JSON.parse(payload))

 if result

 ack!

 else

 reject!

 end

 end

Test Case: RabbitMQ and Rails
Subscribing using Sneakers

● Run the sneakers workers
● `bundle exec rake sneakers:run`

% bundle exec rake sneakers:run

WARN: Loading runner configuration...

...

INFO: New configuration:

#<Sneakers::Configuration:0x00007fb163c980d0 @hash=

INFO: Heartbeat interval used (in seconds): 30

INFO: Heartbeat interval used (in seconds): 30

...

Test Case: RabbitMQ and Valkyrie

● How could one integrate RabbitMQ with Valkyrie?
○ Valkyrie uses ChangeSets to persist new or updated properties to repository objects

○ ChangeSets are persisted using a ChangeSetPersister

○ See the Valkyrie Wiki Documentation

● Extend the ChangeSetPersister
● Example: figgy

https://github.com/samvera-labs/valkyrie/wiki/ChangeSets-and-Dirty-Tracking
https://github.com/pulibrary/figgy

Test Case: Valkyrie and GeoBlacklight

● How could one update a Blacklight catalog using repository messages?
● Implement a Sneakers::Worker
● Example: pulmap

https://github.com/pulibrary/pulmap

Test Case: Valkyrie and GeoBlacklight

Demonstration

Test Case: RabbitMQ and Hyrax

● How could one integrate RabbitMQ with Hyrax?
○ Implement a new Actor

● Publishing
○ Implement a Hyrax::Actors::MessagingActor

○ Insert the Hyrax::Actors::MessagingActor into the stack

● Example Implementation
○ Example Hyrax on GitHub

https://github.com/jrgriffiniii/rabbitmq-hyrax-repository/tree/rabbitmq-messaging-actor

Test Case: RabbitMQ and a Newer Hyrax

● But Actors will be deprecated
○ https://github.com/samvera/hyrax/tree/destroy-all-actors

● Add a transaction step from Dry::Transactions
● Example Implementation

○ Example Hyrax on GitHub

https://github.com/samvera/hyrax/tree/destroy-all-actors
https://github.com/jrgriffiniii/rabbitmq-hyrax-repository/tree/rabbitmq-dry-transaction-publish-message

Questions? Comments?

Synchronizing Samvera Repositories

Thank you kindly for your attention

Thank you to all involved in implementing this distributed architecture:

● Francis Kayiwa
● Kevin Reiss
● Shaun Ellis
● Jon Stroop
● Axa Liauw

● Esmé Cowles
● Trey Pendragon
● Eliot Jordan
● Anna Headley
● Nikitas Tampakis
● Christina Chortaria

