Synchronizing Samvera
Repositories

Samvera Connect 2018

James Griffin
Digital Infrastructure Developer
Princeton University Library



Synchronizing Samvera Repositories

e Beforediscussing synchronization...
e Whatis arepository? Why does one build one?



Digital Repositories: What Do They Do?

e Within an organization what do they provide?
Uploading and sharing things (Publishing)
Describing things (Curation)
Organizing things into collections (Asset management)
Finding things (Discovery)
o  Savingthings (Preservation)
e I|dentifying these requirements, one develops a platform

O O O O



Building a Digital Repository

e How could one approach development?
o Faney Simple but expressive language?
o Reliable and robust framework?
o  Community-driven?

e One canuse Ruby on Rails and Samvera
e Let’s build arepository!

0226
.®

°. ..o‘.
00,
%




Building a Digital Repository
(7 months pass...)

Samvera repository is released!

Curators can manage their collections

Subject specialists can catalog items

Reference librarians can use our repository as a new resource
Generic users can browse each item and search for content
Successful deployment x,%@




Building a Digital Repository

(2 months follow...)

Subject specialists need new controlled vocabularies

Curators need a custom user experience just for their collection
Reference librarians need enhancements to the discovery interface
Our response?

Extend the App!



Scaling a Digital Repository

(1 year follows...)

Curators need another custom user experience for a new unique collection
Reference librarians find the repository slow

Subject specialists have new content to migrate into the repository

We need to update the repository to the latest Samvera Gems

..but we can still only extend a single App!

Add a new server!

Hire a new developer!

We can use DevOps 4 |




Motivation: Monolithic Repositories

e These problems are not new to web development
e Arise from an approach relying upon monolithic system architecture

e There are alternative architectural patterns
o Service-Oriented Architecture
o Distributed Object Architecture
o Message-Oriented Middleware
o Microservices

e These can be nebulous (and used as buzz-phrases)
e These often overlap

ENTERPRISE =
INTEGRATION ™

PATTERNS




Distributed Architecture

e How can system architecture be distributed?
e Thisisalargetopic

e Computing can be distributed on many layers
Distributed object passing (CORBA, DCOM, dRuby?*)
Web service standards (WSDL, SOAP, WADL)
Messaging protocols (XMPP, STOMP, AMPQ)
RESTful services

e We're going to focus upon distribution using messaging protocols

O O O O

*Example of dRuby: https://github.com/youchan/drb-websocket
e



https://github.com/youchan/drb-websocket

Messages

e Whatis amessage?
o Datadescribing an event in our ecosystem
o Payload also contains metadata about the event
O e.8. alice updated FileSet cca3c02 at 10/11/18 ©9:31:00UTC on repol.institution.edu

Services publish messages

Services listen for messages

Messages are stored in queues

Services only access messages using these shared queues



Message Protocols

e Standard protocols determine how messages are sent
o Overthe TCP? Over the HTTP?

e Protocols also determine the message structure

e Streaming Text Oriented Messaging Protocol (STOMP) Stom p h

o Text-based messages
o Key/value pairs contain the data

e Advanced Message Queuing Protocol (AMQP)

o Messages are bitstreams (binary)
o Defines how queues can be accessed by multiple clients

AMQP

Advanced Message Queuing Protocol

G
&
<




Message Brokers

e Sharing queues between services is difficult

e What manages the queue?
o Message Broker

e Publish and Subscribe (Pub/Sub) pattern

e Services publish messages to queue(s) through the broker

o Services can publish to multiple queues
o Thisisafanout

e Services then access the queues by subscribing through the broker



Message Brokers

Open Source Message Brokers

Apache Kafka
Apache Camel
ActiveMQ
RabbitMQ
HornetQ

Redis

Celery

(There are more)




Test Case: RabbitMQ

e We canonly discuss one solution today :(

e Princeton University Library uses RabbitMQ
o Implements the AMQP

e Otherrepositories are using alternatives
o  Apache Camel, Fedora 4, and Islandora (https://github.com/Islandora-CLAW/Alpaca)
o Apache Kafka and Trellis (https://github.com/trellis-ldp-archive/trellis-kafka) 4

e Rails provides ActivelJob as an abstraction layer
o Somewhat comparable
o  Support for Redis, MongoDB, PostgreSQL, ...

e Disclaimer:
o This talk is not an endorsement for RabbitMQ



https://github.com/Islandora-CLAW/Alpaca
https://github.com/trellis-ldp-archive/trellis-kafka

ruby-amagp/bunny

O

Gem for RabbitMQ in Ruby

Configuration is simple

O

O

O

Client builds a connection
Client connects to a channel
Client interfaces with the queue

require "bunny"

conn = Bunny.new

conn.start

ch = conn.create_channel

g = ch.queue("test1")

g.publish("Hello, everybody!")

delivery info, metadata, payload = q.pop

puts "This is the message: #{payload}"

conn.stop



https://rubygems.org/gems/bunny

Publishing to RabetMQ # frozen_string literal: true
class MessagingClient
e ruby-amgp/bunny
o  Construct a Bunny client def publish(status, model)
o Define an adapter for the client
o Make aservice object!

message = generate_message(status, model)

exchange.publish(message, persistent: true)

rescue

Rails.logger.warn "Unable to publish message to
amgp_url}"

end



https://rubygems.org/gems/bunny

* N
®, . =
(4
| |

Publishing to RabbitMQ class User < ApplicationRecord

include Hyrax::User
e ruby-amgp/bunny

© Construct a Bunny client after_create_commit :publish create_message
o Define an adapter for the client

o Make aservice object!

e Use transaction callbacks
o after commit

after_update commit :publish update_message

after_delete commit :publish delete _message



https://rubygems.org/gems/bunny
https://guides.rubyonrails.org/active_record_callbacks.html#transaction-callbacks

L]
M rAILS
Publishing tO RabbitMQ class User < ApplicationRecord

e ruby-amgp/bunny def publish_create_message
o Construct a Bunny client messaging_client.publish_message(
o Define an adapter for the client
o Make aservice object!

e Use transaction callbacks
o after commit

e Publish messages to the queue

:Create,

def messaging client

MessagingClient.new



https://rubygems.org/gems/bunny
https://guides.rubyonrails.org/active_record_callbacks.html#transaction-callbacks

Y {1
Subscribing to RabbitMQ Sneakers . configure(

amgp: "amgp://localhost:5672",

® PrOblem: exchange: "my_repository",

o Rails can't serve requests and listen to exchange_type: :fanout,
the Rabbit queue

e Use asynchronous workers

e jondot/sneakers

o  Gem with support for RabbitMQ
o Uses Redis for background processing

handler: Sneakers::Handlers::Maxretry

)

Sneakers.logger.level = Logger::INFO



https://rubygems.org/gems/sneakers

* N
®, . =
(4
| |

Subscribing using Sneakers class AmgpMessageWorker

include Sneakers: :Worker

e |[mplement a Worker
® Sneaker: :Worker Module def work(payload)
o Override the #WOI"I( methOd result = process(JSON.parse(payload))

if result
ack!

else

reject!

end

end




Subscribing using Sneakers % bundle exec rake sneakers:run

WARN: Loading runner configuration...

e Runthe sneakers workers

° “bundle exec rake sneakers:run’

INFO: New configuration:

#<Sneakers: :Configuration:0x00007fb163c980d0 @hash=

INFO: Heartbeat interval used (in seconds): 30

INFO: Heartbeat interval used (in seconds): 30




Test Case: RabbitMQ and Valkyrie

e How could one integrate RabbitMQ with Valkyrie?

o Valkyrie uses ChangeSets to persist new or updated properties to repository objects
o ChangeSets are persisted using a ChangeSetPersister
o Seethe Valkyrie Wiki Documentation

e ExtendtheChangeSetPersister
e Example: figgy



https://github.com/samvera-labs/valkyrie/wiki/ChangeSets-and-Dirty-Tracking
https://github.com/pulibrary/figgy

Test Case: Valkyrie and GeoBlacklight

G @btacklight

e How could one update a Blacklight catalog using repository messages?
e |Implement aSneakers: :Worker

e Example: pulmap



https://github.com/pulibrary/pulmap

Test Case: Valkyrie and GeoBlacklight

G @blacklight

Demonstration




Test Case: RabbitMQ and Hyrax

-

e How could one integrate RabbitMQ with Hyrax?
o Implement anew Actor
e Publishing

o ImplementaHyrax: :Actors: :MessagingActor
o InserttheHyrax: :Actors: :MessagingActor into the stack

e Example Implementation
o Example Hyrax on GitHub



https://github.com/jrgriffiniii/rabbitmq-hyrax-repository/tree/rabbitmq-messaging-actor

Test Case: RabbitMQ and a Newer Hyrax

-

e But Actors will be deprecated
o https://github.com/samvera/hyrax/tree/destroy-all-actors

e AddatransactionstepfromDry: :Transactions

e Example Implementation
o Example Hyrax on GitHub



https://github.com/samvera/hyrax/tree/destroy-all-actors
https://github.com/jrgriffiniii/rabbitmq-hyrax-repository/tree/rabbitmq-dry-transaction-publish-message

Questions? Comments?



Synchronizing Samvera Repositories

Thank you to all involved in implementing this distributed architecture:

Esmé Cowles e Francis Kayiwa
Trey Pendragon e Kevin Reiss
Eliot Jordan e ShaunEllis
Jon Stroop
Anna Head| °
e Teatiey e Axaliauw

Nikitas Tampakis
Christina Chortaria

2]

Thank you kindly for your attention




