
Redesigning BrowseEverything
Samvera Connect 2019

Thomas Scherz
Randall Floyd

Christina Chortaria
James Griffin

BrowseEverything
● Samvera Core Component
● Rails Engine
● Permits users to select files (or directories) for repository ingestion
● Supports multiple file/directory sources

○ File System
○ Google Drive
○ Dropbox
○ Amazon S3 Buckets
○ Box

BrowseEverything
● Did not offer a 1.0.0 release until March 2019
● In use by many production Samvera repositories
● Problem: Maintaining drivers for cloud storage providers

○ Many cloud providers have different APIs
○ Feature requests submitted for organizations are provider-specific
○ How to define an API for a cloud provider?

● Before these challenges can be discussed, we will explore the Driver API

BrowseEverything: Driver API
● The Driver API wraps cloud provider clients
● Let us review the code base for drivers!

○ Base driver
○ Amazon S3 driver
○ Google Drive driver

● Drivers are inconsistent
○ Some cloud clients require OAuth2 authorization
○ Cloud clients search directories/folders

● This needs to change

https://github.com/samvera/browse-everything/blob/master/lib/browse_everything/driver/base.rb
https://github.com/samvera/browse-everything/blob/master/lib/browse_everything/driver/s3.rb
https://github.com/samvera/browse-everything/blob/master/lib/browse_everything/driver/google_drive.rb

BrowseEverything: Driver API
● We started prototyping API changes in supporting Google Drive
● Analysis

https://docs.google.com/spreadsheets/d/1xNwd6HcvvCd5de8_mcO4nYLZlj6-3PCbNYSL4CJbOFw/edit#gid=0

BrowseEverything: Rearchitecting APIs
● Drivers need an API specification
● But there were also other requirements

○ User Interface improvements
○ Legacy jQuery Plugin dependencies
○ jQuery binding to server-rendered partial HTML

● Are there other approaches?
○ Can Rails Controllers just serve JSON data instead?

BrowseEverything: Rearchitecting APIs
● REST

○ Representational State Transfer (REST)
○ URL path structure combined with HTTP methods to define an API

■ GET “reads” an object
● GET https://institution.edu/repo/rest/v1/books/1

■ POST “creates” an object
● POST https://institution.edu/repo/rest/v1/books

■ PATCH “updates” an object
● PATCH https://institution.edu/repo/rest/v1/books/1

■ DELETE “deletes” an object
● DELETE https://institution.edu/repo/rest/v1/books/1

BrowseEverything: Rearchitecting APIs
● Swagger

○ Really, OpenAPI
○ Documents the RESTful API and HTTP methods
○ Gems and other libraries build upon Swagger utilities

BrowseEverything: Rearchitecting UI
● How does one consume data from our RESTful API?
● With Rails release 6.0.0, Webpack is supported for JavaScript assets

○ Without Sprockets, using ES6 or TypeScript with Node.js packages becomes easier

● BrowseEverything developers can also explore jQuery alternatives
○ Angular?
○ Vue?
○ React?
○ Nothing at all?

BrowseEverything: Rearchitecting UI
● Prototyping

○ After a spike, React with Redux was chosen

● React
○ JavaScript user interface framework
○ Logically groups a user interface into “components”
○ Oriented towards modularity
○ Supported by a major company
○ Competing only with Vue for dominance

● Redux
○ React is not concerned with fetching data from the server
○ Redux provides these features
○ Support for integrating React and Redux is mature

BrowseEverything: Web Components
● React is still an investment in a framework

○ Will we need to abandon React in the future?

● Solution: Web Components
○ https://github.com/w3c/webcomponents
○ Web Components are not tied to frameworks
○ We can build a UI from a collection of Web Components

that can be reused in different frameworks (or no framework)
○ Still, developing them requires adoption of some Web Component

library or toolset

https://github.com/w3c/webcomponents

BrowseEverything: Stencil
● Stencil is one such library that can help us create Web Components for

use as custom elements anywhere
○ From Ionic Framework Team

● It is a compiler that takes things like the Virtual DOM, TypeScript and JSX
and generates standards compliant Web Components

● We want to compose the main B-E UI out of smaller reusable granular
Web Components

○ For example, a Stencil Web Component for the ByteStream row in B-E is being prototyped

https://stenciljs.com/
https://ionicframework.com/
https://github.com/randalldfloyd/browse-everything-components

BrowseEverything: Stencil
● Can Stencil Web Components, React, and Redux be integrated?

○ Yes, with caveats: each framework has their own quirks for direct integration of a Stencil
Web Component

○ Ability to compile to popular frameworks as output targets is a work in progress

● But Material-UI, a React UI framework, makes composition using Web
Components even easier

○ Material-UI allows you to replace the root node of most of their components via a
property

https://material-ui.com/

BrowseEverything: Stencil
● We can pass a Material-UI container a B-E Web Component like:

<div>
...
 <StyledChildResourceTree
 ...
 <ListItem // A Material-UI component
 variant="contained"
 color="secondary"
 component="bytestream" // From collection of BrowseEverything components
 onClick={this.handleClickAuthButton}
 ...
 />
 />
</div>

BrowseEverything: Stencil
● Can Stencil Web Components be used outside of React and Redux?

Vue.js

BrowseEverything: Stencil
● Stencil is still evolving and growing
● Use of Stencil in high-profile services, like Apple Music Web Beta, shows

viable product and vibrant community
○ https://twitter.com/stenciljs/status/1169719595508408320?s=19

● Better React and Angular integration is coming
○ They are working on open sourcing their bindings to those so that you can compile to

native React/Angular components
○ https://twitter.com/jthoms1/status/1176941324123201542?s=19

https://twitter.com/stenciljs/status/1169719595508408320?s=19
https://twitter.com/jthoms1/status/1176941324123201542?s=19

BrowseEverything: Prototyping
● Progress on this has been slow...
● Steadily prototyping of 2.0.0 and React/Redux frontend is underway
● We will now demonstrate the prototype

BrowseEverything: Forthcoming
● Hooking into Hyrax will be supported
● To be determined: JavaScript dependencies

○ Webpack? Sprockets?
○ CDN?
○ Static asset?

● Better user experience
○ James is at fault for this (sorry)

● A11y and i18n
○ These were not priorities, but should be

● Community CfP
○ Maybe a community sprint?

BrowseEverything: Questions?
Q & A

Redesigning BrowseEverything
Thank you for your attention!

Please join us using:

#browse-everything

BrowseEverything Interest Group

https://wiki.duraspace.org/display/samvera/Samvera+BrowseEverything+Interest+Group

