
A Target Always Moving

New Rails
Features

and how to use them

Insert Self Deprecation Slide Here

Who is This
Clown?
Rob Kaufman
@orangewolf
http://spkr8.com/s/7218

Founder of Notch8 - An App
Development Consultancy since 2007

It’s the high level

Part 1 - Overview

Timeline

● Rails 4.2 December 20, 2014

● Rails 5.0 June 30, 2016

● Rails 5.1 April 27, 2017

● Active Job, ActionMailer
#deliver_later

● Action Cable, Turbolinks 5,
Attributes API,
ApplicationRecord

● Webpacker

ActiveJob

● A uniform instance for background work

● This is code the runs outside the typical request,
response system

● Can be backed by many different background runners
including: DelayedJob, Resque, Sidekiq Built in queue

ApplicationRecord

● Adds a parent object that all
models inherit from

● Makes AR uniform with
ApplicationControllers

● Applies to ActionMailer and
ActiveJob as well

Attributes API

● gives types to attr_accessor or AR attribute objects

● you can add your own custom types

Webpacker in Rails

● Brings in two new tools to the asset pipeline flow

● The first is webpack a pre-compiler and packager

● The second is yarn, which is built on top of NPM for
package management, similar to how Bundler works on
gem files

ActionCable

● Websockets in Rails

● Can create realtime updating events and access them
both on the server and on the client side

● Uses PubSub for clients

It’s almost over!

Questions?
Rob Kaufman
rob@notch8.com
http://spkr8.com/s/7218
@orangewolf

Matt Clark
matt@notch8.com
@winescout

mailto:rob@notch8.com
http://spkr8.com/s/7218
mailto:matt@notch8.com

Let’s get to the details

Part 2 - Backend

ActiveJob

● A uniform instance for background work

● This is code the runs outside the typical request,
response system

● Can be backed by many different background runners
including: DelayedJob, Resque, Sidekiq Built in queue

ActiveJob
Adapters

Async Queue Delayed Priorities Timeout Retries

Backburner Yes Yes Yes Yes Job Global

Delayed Job Yes Yes Yes Job Global Global

Qu Yes Yes No No No Global

Que Yes Yes Yes Job No Job

queue_classic Yes Yes Yes* Yes No No

Resque Yes Yes Yes (gem) Queue Global Yes

Sidekiq Yes Yes Yes Queue No Job

Sneakers Yes Yes No Queue Queue No

Sucker Punch Yes Yes Yes No No No

Active Job Async Yes Yes Yes No No No

Active Job Inline No Yes N/A N/A N/A N/A

http://api.rubyonrails.org/v5.1.4/classes/ActiveJob/QueueAdapters.html for adapters

deliver_later

Lets you easily queue mail so your users
never wait for SMTP handshakes

ActiveJob

bin/rails generate job guests_cleanup --queue urgent

class GuestsCleanupJob < ApplicationJob
 queue_as :default

 def perform(*guests)
 # Do something later
 end
end

Configure
config.active_job.queue_adapter = :sidekiq

ActiveJob

Enqueue a job to be performed as soon as the queuing system is free
GuestsCleanupJob.perform_later guest

Enqueue a job to be performed tomorrow at noon.
GuestsCleanupJob.set(wait_until: Date.tomorrow.noon).perform_later(guest)

Enqueue a job to be performed 1 week from now.
GuestsCleanupJob.set(wait: 1.week).perform_later(guest)

`perform_now` and `perform_later` will call `perform` under the hood so
you can pass as many arguments as defined in the latter.
GuestsCleanupJob.perform_later(guest1, guest2, filter: 'some_filter')

Callbacks

● before_enqueue

● around_enqueue

● after_enqueue

● before_perform

● around_perform

● after_perform

ActiveJob

Exercise

In app samvera-active-job in the VirtualBox image, move
the following to be background tasks

- Sending an email report from SearchRecord once a day

- Creating a SearchRecord when a search is done

ApplicationRecord

● Adds a parent object that all
models inherit from

● Makes AR uniform with
ApplicationControllers

● Applies to ActionMailer and
ActiveJob as well

Attributes API

● gives types to attr_accessor or AR attribute objects

● you can add your own custom types

class Reservation < ApplicationRecord
 after_initialize :set_default_start_date
 after_initialize :set_default_end_date
 attr_accessor :end_date

 def price=(value)
 return super(0) if !value.to_s.include?('$')

 price_in_dollars = value.gsub(/\$/, '').to_d
 super(price_in_dollars * 100)
 end

 private

 def set_default_start_date
 self.start_date = 1.day.from_now if start_date.blank?
 end

 def set_default_end_date
 self.end_date = 8.days.from_now if end_date.blank?
 end
end

2.3.1 :001 > reservation = Reservation.new
 => #<Reservation id: nil, start_date: "2016-12-03",
 price: nil, created_at: nil, updated_at: nil>
2.3.1 :002 > reservation.start_date
 => Sat, 03 Dec 2016
2.3.1 :003 > reservation.end_date
 => Sat, 10 Dec 2016
2.3.1 :004 > reservation = Reservation.new(start_date: 3.days.from_now)
 => #<Reservation id: nil, start_date: "2016-12-05",
 end_date: “2016-12-10",
 price: nil, created_at: nil, updated_at: nil>
2.3.1 :005 > reservation.start_date
 => Mon, 05 Dec 2016

class Reservation < ApplicationRecord
 attribute :start_date, :date, default: -> { 1.day.from_now }
 attribute :end_date, :date, default: -> { 8.days.from_now }

 def price=(val)
 return super(0) if !value.to_s.include?('$')

 price_in_dollars = value.gsub(/\$/, '').to_d
 super(price_in_dollars * 100)
 end
end

app/types/price.rb

class PriceType < ActiveRecord::Type::Integer
 def cast(value)
 return super if value.kind_of?(Numeric)
 return super if !value.to_s.include?('$')

 price_in_dollars = BigDecimal.new(value.gsub(/\$/, ''))
 super(price_in_dollars * 100)
 end
end

config/initializers/types.rb

ActiveRecord::Type.register(:price, Price)

class Reservation < ApplicationRecord
 attribute :start_date, :date, default: -> { 1.day.from_now }
 attribute :end_date, :date, default: -> { 8.days.from_now }
 attribute :price, :price
end

Exercise

● Use a combination of ApplicationRecord and Attributes
API to refactor the code found in samvera-attributes

But really, mostly Javascript

Frontend

Webpacker in Rails

● Brings in two new tools to the asset pipeline flow

● The first is webpack a pre-compiler and packager (also
babel)

● The second is yarn, which is built on top of NPM for
package management, similar to how Bundler works on
gem files

Webpacker in Rails

● Webpack is Javascript preprocessor and bundler that has
wide adoption among current JS tools like React, Vue
and and others.

● Webpacker, now built in to Rails, makes building React
components in Rails applications first class citizens in
the asset pipeline

● Doesn’t require complex manipulation by Sprockets (the
existing asset packager in Rails) but instead uses the
same tool chain (Webpack and Bable) these communities
use in other places.

Webpack

What is Babel

Webpacker in Rails

● Javascript / CSS / Image sets can be built in to “packs” which are
individually packaged up files that all get loaded together.

● A dashboard with several React widgets would be a good example
of a pack.

● Packs live alongside your existing JS, but should not be intermixed

● Pack files live in app/javascript as opposed to
app/assets/javascripts

● ./bin/webpacker-dev-server is only needed for hot reloading,
we’re going to skip it for now and focus on what’s built in

Webpack Plus Babel
.babelrc

Yarn in Rails

● Webpacker packs have access to NPM packages which
are installed via yarn. Adding a NPM dependency to
your application is as easy as typing yarn add
DEPNAME

● You can then import that package in your JS pack as
normal

Autocomplete Search Field

● Given an existing hyrax app, lets make the search field
an auto completing React component

Create a React Component

app/javascript/components/search/index.js

Create a Pack

app/javascript/packs/search.js

Add Component To Form

<!-- Add the pack to the document head -->
<% content_for :head do %>
 <%= javascript_pack_tag 'search' %>
<% end %>

…
 <!-- Replace Text element ith our React component -->
 <%= react_component('Search', {query: params[:q], placeholder:
t('blacklight.search.form.search.placeholder')}) %>

…

Expanded Component

Expanded Component

Exercise

● Using the README in samvera-react as a guide follow
the steps to get your first React component showing up
in a Samvera app

ActionCable
● Websockets in Rails

● Can create realtime updating events and access them
both on the server and on the client side

● Uses PubSub for clients

● Connections

● Handles Authentication

● Channels

● Kind of like a controller

Before Action Cable

Polling

Faye

????

Pubsub

Before Pubsub we had polling
Server ClienServer

No
Any Updates?

Any Updates?
Yes

Any Updates?

No

Websockets

ClientServer
Let me know if there are
any changes.

Server Side Connection

Client Side Connection

Boilerplate. Rails set this up for us

A Channel

app/channels/chat_channel.rb
class ChatChannel < ApplicationCable::Channel
 def subscribed
 stream_from "chat_#{params[:room]}"
 end
end

Broadcasting to a Channel
app/controllers/messages_controller.rb

class MessagesController < ApplicationController

 def create

 message = Message.new(message_params)

 message.user = current_user

 if message.save

 ActionCable.server.broadcast “chat_#{params[:room]},

 message: message.content,

 user: message.user.username

 head :ok

 end

 end

end

Client Side

// app/assets/javascripts/channels/messages.js

App.messages = App.cable.subscriptions.create({channel: 'ChatChannel', room: ‘Samvera’}, {

 received: function(data) {

 return $('#messages').append(this.renderMessage(data));

 },

 renderMessage: function(data) {

 return "<p> " + data.user + ": " + data.message + "</p>";

 }

});

React?

Live Coding

Create a LiveSearch Component
/app/javascript/components/LiveSearch.js

LiveSeach Pack
/app/javascript/packs/LiveSearch.js

Create a new file: /app/views/catalog/_search_sidebar.html.erb

Copy over layout for head

<% content_for :head do %>
 <%= javascript_pack_tag 'LiveSearch' %>
<% end %>

<h4>Sidebar</h4>
<%= react_component(“LiveSearch”) %>

Working with Action Cable

$ rails g channel live_search

/app/channels/live_search_channel.rb

Live Search Component - Subscribe

/app/javascript/components/LiveSearch.js

Live Search -Render

Broadcast Searches

 before_action :broadcast_live_search

 def broadcast_live_search
 if params[:q]
 ActionCable.server.broadcast "live_search",
params[:q]
 end
 end

Exercise

Use the samvera-action-cable repo to create your own
live search component

It’s OVER!!

Thank You!
Rob Kaufman
rob@notch8.com
http://spkr8.com/s/7218
@orangewolf

Matt Clark
matt@notch8.com
@winescout

mailto:rob@notch8.com
http://spkr8.com/s/7218
mailto:matt@notch8.com

